[1] L Stott, B Davy, J Shao, R Coffin, I Pecher, H Neil, P Rose, J Bialas, CO2 release from pockmarks on the Chatham Rise-Bounty Trough at the glacial termination, Paleoceanogr. Paleoclimatol. 34, 1726 (2019).
https://doi.org/10.1029/2019PA003674

[2] Z Anka, C Berndt, A Gay, Hydrocarbon leakage through focused fluid flow systems in continental margins, Mar. Geol. 332, 1 (2012).
https://doi.org/10.1016/j.margeo.2012.10.012

[3] A Gay, S Migeon, Geological fluid flow in sedimentary basins, Bull. Soc. Géol. Fr. 188, E3 (2017).
https://doi.org/10.1051/bsgf/2017200

[4] M Huuse, C A L Jackson, P Van Rensbergen, R J Davies, P B Flemings, R J Dixon, Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview, Basin Res. 22, 342 (2010).
https://doi.org/10.1111/j.1365-2117.2010.00488.x

[5] A Gay, M Lopez, C Berndt, M Séranne, Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin, Mar. Geol. 244, 68 (2007).
https://doi.org/10.1016/j.margeo.2007.06.003

[6] H Sahling, C Borowski, et al., Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico, Biogeosciences 13, 4491 (2016).
https://doi.org/10.5194/bg-13-4491-2016

[7] B Ameyaw, L Yao, A Oppong, J K Agyeman, Investigating, forecasting and proposing emission mitigation pathways for CO2 emissions from fossil fuel combustion only: A case study of selected countries, Energ. Policy 130, 7 (2019).
https://doi.org/10.1016/j.enpol.2019.03.056

[8] Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Eds. T F Stocker, D Qin et al., Cambridge University Press, New York (2014).

[9] Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Eds. R K Pachauri, L Meyer et al., IPCC, Geneva (2015).

[10] G Etiope, G Ciotoli, S Schwietzke, M Schoell, Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data 11, 1 (2019).
https://doi.org/10.5194/essd-11-1-2019

[11] M Saunois, P Bousquet, B Poulter, et al., The global methane budget 2000-2012, Earth Syst. Sci. Data 8, 697 (2016).

[12] R Juanes, Y Meng, B K Primkulov, Multiphase flow and granular mechanics, Phys. Rev. Fluids 5, 110516 (2020).
https://doi.org/10.1103/PhysRevFluids.5.110516

[13] B Sandnes, E G Flekkøy, H A Knudsen, K J Måløy, H See, Patterns and flow in frictional fluid dynamics, Nat. Commun. 2, 288 (2011).
https://doi.org/10.1038/ncomms1289

[14] M C Brooks, W R Wise, M D Annable, Fundamental changes in In Situ Air Sparging flow patterns, Ground Water Monit. R 19, 105 (1999).
https://doi.org/10.1111/j.1745-6592.1999.tb00211.x

[15] J S Selker, M Niemet, N G McDuffie, S M Gorelick, J Y Parlange, The local geometry of gas injection into saturated homogeneous porous media, Transp. Porous Med. 68, 107 (2007).
https://doi.org/10.1007/s11242-006-0005-0

[16] X Z Kong, W Kinzelbach, F Stauffer, Morphodynamics during air injection into water-saturated movable spherical granulates, Chem. Eng. Sci. 65, 4652 (2010).
https://doi.org/10.1016/j.ces.2010.05.007

[17] G Varas, V Vidal, J C Géminard, Venting dynamics of an immersed granular layer, Phys. Rev. E 83, 011302 (2011).
https://doi.org/10.1103/PhysRevE.83.011302

[18] G Varas, G Ramos, J C Géminard, V Vidal, Flow and fracture in water-saturated, unconstrained granular beds, Front. Phys. 3, 44 (2015).
https://doi.org/10.3389/fphy.2015.00044

[19] R Holtzmann, R Juanes, Crossover from fingering to fracturing in deformable disordered media, Phys. Rev. E 82, 046305 (2010).
https://doi.org/10.1103/PhysRevE.82.046305

[20] R Holtzmann, M L Szulczewski, R Juanes, Capillary fracturing in granular media, Phys. Rev. Lett. 108, 264504 (2012).
https://doi.org/10.1103/PhysRevLett.108.264504

[21] R Poryles, G Varas, V Vidal, Stability of gas channels in a dense suspension in the presence of obstacles, Phys. Rev. E 95, 062905 (2017).
https://doi.org/10.1103/PhysRevE.95.062905

[22] M K Hubbert, D G Willis, Mechanics of hydraulic fracturing, Pet. Trans. AIME 210, 153 (1957).
https://doi.org/10.2118/686-G

[23] E Detournay, Mechanics of hydraulic fractures, Annu. Rev. Fluid Mech. 48, 311 (2016).
https://doi.org/10.1146/annurev-fluid-010814-014736

[24] J M Ham, S Thomas, E Guazzelli, G M Homsy, M-C Anselmet, An experimental study of the stability of liquid-fluidized beds, Int. J. Multiphas. Flow 16, 171 (1990).
https://doi.org/10.1016/0301-9322(90)90052-K

[25] P Rigord, A Guarino, V Vidal, J-C Géminard, Localized instability of a granular layer submitted to an ascending liquid flow, Granul. Matter 7, 191 (2005).
https://doi.org/10.1007/s10035-005-0214-1

[26] T Mörz, E A Karlik, S Kreiter, A Kopf, An experimental setup for fluid venting in unconsolidated sediments: New insights to fluid mechanics and structures, Sediment. Geol. 196, 251 (2007).
https://doi.org/10.1016/j.sedgeo.2006.07.006

[27] R J Nichols, R S J Sparks, C J N Wilson, Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures, Sedimentology 41, 233 (1994).
https://doi.org/10.1111/j.1365-3091.1994.tb01403.x

[28] M Houssais, C Maldarelli, J Morris, Soil granular dynamics on-a-chip: fluidization inception under scrutiny, Lab Chip 19, 1226 (2019).
https://doi.org/10.1039/C8LC01376D

[29] Y-F Shi, Y S Yu, L T Fan, Incipient fluidization condition for a tapered fluidized bed, Ind. Eng. Chem. Fundam. 23, 484 (1984).
https://doi.org/10.1021/i100016a018

[30] X Cui, J Li, A Chan, D Chapman, Coupled DEM-LBM simulation of internal fluidisation induced by a leaking pipe, Powder Technol. 254, 299 (2014).
https://doi.org/10.1016/j.powtec.2014.01.048

[31] A Carrara, A Burgisser, G W Bergantz, The architecture of intrusions in magmatic mush, Earth Planet Sci. Lett. 549, 116539 (2020).
https://doi.org/10.1016/j.epsl.2020.116539

[32] F Zoueshtiagh, A Merlen, Effect of a vertically flowing water jet underneath a granular bed, Phys. Rev. E 75, 056313 (2007).
https://doi.org/10.1103/PhysRevE.75.056313

[33] E P Montellà, M Toraldo, B Chareyre, L Sibille, Localized fluidization in granular materials: Theoretical and numerical study, Phys. Rev. E 94, 052905 (2016).
https://doi.org/10.1103/PhysRevE.94.052905

[34] S E Mena, L-H Luu, P Cuéllar, P Philippe, J S Curtis, Parameters affecting the localized fluidization in a particle medium, AIChE J. 63, 1529 (2017).
https://doi.org/10.1002/aic.15665

[35] J Ngoma, P Philippe, S Bonelli, F Radjai, J-Y Delenne, Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods, Phys. Rev. E 97, 052902 (2018).
https://doi.org/10.1103/PhysRevE.97.052902

[36] I Dumke, C Berndt, G J Crutchley, S Krause, V Liebetrau, A Gay, M Couillard, Seal bypass at the Giant Gjallar Vent (Norwegian Sea): Indications for a new phase of fluid venting at a 56-Ma-old fluid migration system, Mar. Geol. 351, 38 (2014).
https://doi.org/10.1016/j.margeo.2014.03.006

[37] A Gay, R Mourgues, C Berndt, D Bureau, S Planke, D Laurent, S Gautier, C Lauer, D Loggia, Anatomy of a fluid pipe in the Norway Basin: Initiation, propagation and 3D shape, Mar. Geol. 332, 75 (2012).
https://doi.org/10.1016/j.margeo.2012.08.010

[38] A Gay, M Lopez, P Cochonat, M Séranne, D Levaché, G Sermondadaz, Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin, Mar. Geol. 226, 25 (2006).
https://doi.org/10.1016/j.margeo.2005.09.018

[39] M Hovland, R Heggland, M H De Vries, T I Tjelta, Unit-pockmarks and their potential significance for predicting fluid flow, Mar. Petrol. Geol. 27, 1190 (2010).
https://doi.org/10.1016/j.marpetgeo.2010.02.005

[40] H Løseth, L Wensaas, B Arntsen, N M Hanken, C Basire, K Graue, 1000 m long gas blow-out pipes, Mar. Petrol. Geol. 28, 1047 (2011).
https://doi.org/10.1016/j.marpetgeo.2010.10.001

[41] S M Ruge, N Scarselli, A Bilal, 3D seismic classification of fluid escape pipes in the western Exmouth Plateau, North West Shelf of Australia, J. Geol. Soc. 178, jgs2020-096 (2021).
https://doi.org/10.1144/jgs2020-096

[42] P Van Rensbergen, A Rabaute, A Colpaert, T St Ghislain, M Mathijs, A Bruggeman, Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data, Int. J. Earth Sci. 96, 185 (2007).
https://doi.org/10.1007/s00531-005-0021-2

[43] R Heggland, Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data, Mar. Petrol. Geol. 15, 1 (1998).
https://doi.org/10.1016/S0264-8172(97)00060-3

[44] H Ligtenberg, Unravelling the petroleum system by enhancing fluid migration paths in seismic data using a neural network based pattern recognition technique, Geofluids 3, 255 (2003).
https://doi.org/10.1046/j.1468-8123.2003.00072.x

[45] H Ligtenberg, Detection of fluid migration pathways in seismic data: implications for fault seal analysis, Basin Res. 17, 141 (2005).
https://doi.org/10.1111/j.1365-2117.2005.00258.x

[46] P Meldahl, R Heggland, B Bril, P De Groot, The chimney cube, an example of semiautomated detection of seismic objects by directive attributes and neural networs: Part I; Methodology, SEG Technical Program Expanded Abstracts, 931 (1999).
https://doi.org/10.1190/1.1821262

[47] K M Tingdahl, A H Bril, P F de Groot, Improving seismic chimney detection using directional attributes, J. Petrol. Sci. Eng. 29, 205 (2001).
https://doi.org/10.1016/S0920-4105(01)00090-0

[48] C Roelofse, T M Alves, J Gafeira, Structural controls on shallow fluid flow and associated pockmark fields in the East Breaks area, northern Gulf of Mexico, Mar. Petrol. Geol. 112, 104074 (2020).
https://doi.org/10.1016/j.marpetgeo.2019.104074

[49] T Velayatham, S P Holford, M A Bunch, R C King, Fault controlled focused fluid flow in the Ceduna Sub-Basin, offshore South Australia; evidence from 3D seismic reflection data, Mar. Petrol. Geol. 127, 104813 (2021).
https://doi.org/10.1016/j.marpetgeo.2020.104813

[50] B Callow, J M Bull, G Provenzano, et al., Seismic chimney characterisation in the North Sea - Implications for pockmark formation and shallow gas migration, Mar. Petrol. Geol. 133, 105301 (2021).
https://doi.org/10.1016/j.marpetgeo.2021.105301

[51] A Gay, M Lopez, P Cochonat, N Sultan, E Cauquil, F Brigaud, Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin, Geol. Soc. London Spec. Publ. 216, 173 (2003).
https://doi.org/10.1144/GSL.SP.2003.216.01.12

[52] R Riera, V Paumard, M de Gail, M M Saqab, U Lebrec, S C Lang, A Lane, Origin of seafloor pockmarks overlying submarine landslides: Insights from semi-automated mapping of 3D seismic horizons (North West Shelf, Australia), Mar. Petrol. Geol. 136, 105453 (2022).
https://doi.org/10.1016/j.marpetgeo.2021.105453

[53] A H Robinson, B Callow, C Bottner, et al., Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins, Int. J. Greenh. Gas Con. 106, 103245 (2021).
https://doi.org/10.1016/j.ijggc.2020.103245

[54] B Schramm, C Berndt, A Dannowski, C Böttner, J Karstens, J Elger, Seismic imaging of an active fluid conduit below Scanner Pockmark, Central North Sea, Mar. Petrol. Geol. 133, 105302 (2021).
https://doi.org/10.1016/j.marpetgeo.2021.105302

[55] H Ondreas, J-L Charlou, K Olu, Y Fouquet, P Cochonat, A Gay, B Dennielou, J-P Donval, A Fifis, T Nadalig, M Sibuet, ROV study of a giant pockmark on the Gabon continental margin, Geo-Mar. Lett. 25, 281 (2005).
https://doi.org/10.1007/s00367-005-0213-6

[56] M Longo, G Lazzaro, C G Caruso, V Radulescu, R Radulescu, S S Sciré Scappuzzo, D Birot, F Italiano, Black Sea methane flares from the Seafloor: Tracking outgassing by using passive acoustics, Front. Earth Sci. 9, 678834 (2021).
https://doi.org/10.3389/feart.2021.678834

[57] A Gay, M Lopez, J L Potdevin, V Vidal, G Varas, A Favier, N Tribovillard, 3D morphology and timing of the giant fossil pockmark of Beauvoisin, SE Basin of France, J. Geol. Soc. 176, 61 (2019).
https://doi.org/10.1144/jgs2018-064

[58] K A Campbell, Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions, Palaeogeogr. Palaeocl. 232, 362 (2006).
https://doi.org/10.1016/j.palaeo.2005.06.018

[59] S Kiel, The fossil record of vent and seep mollusks, In: The Vent and Seep Biota: Aspects from Microbes to Ecosystems, Ed. S Kiel, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-90-481-9572-5

[60] B M A Teichert, B van de Schootbrugge, Tracing Phanerozoic hydrocarbon seepage from local basins to the global Earth system, Palaeogeogr. Palaeocl. 390, 1 (2013).
https://doi.org/10.1016/j.palaeo.2013.10.001

[61] A Gay, A Favier, J L Potdevin, et al., Polyphased fluid flow in the giant fossil pockmark of Beauvoisin, SE basin of France, BSGF - Earth Sci. Bull. 191, 35 (2020).
https://doi.org/10.1051/bsgf/2020036

[62] N M Hanken, R G Bromley, J Miller, Plio-Pleistocene sediments in coastal grabens, north-east Rhodes, Greece, Geol. J. 31, 271 (1996).
https://doi.org/10.1002/(SICI)1099-1034(199609)31:3<271::AID-GJ712>3.0.CO;2-7

[63] R Løvlie, N M Hanken, Conglomerate test of non-lithified Plio-Pleistocene marine sediments suggests pDRM type remagnetisation, Phys. Chem. Earth 27, 1121 (2002).
https://doi.org/10.1016/S1474-7065(02)00107-9

[64] B Ledésert, C Buret, F Chanier, J Ferrière, P Recourt, Tubular structures of northern Wairarapa (New Zealand) as possible examples of ancient fluid expulsion in an accretionary prism: Evidence from field and petrographical observations, Geol. Soc. London Spec. Publ. 216, 95 (2003).
https://doi.org/10.1144/GSL.SP.2003.216.01.07

[65] K Faure, J Greinert, J S von Deimling, D F McGinnis, R Kipfer, P Linke, Methane seepage along the Hikurangi Margin of New Zealand: Geochemical and physical data from the water column, sea surface and atmosphere, Mar. Geol. 272, 170 (2010).
https://doi.org/10.1016/j.margeo.2010.01.001

[66] S L Nyman, C S Nelson, The place of tubular concretions in hydrocarbon cold seep systems: Late Miocene Urenui Formation, Taranaki Basin, New Zealand, AAPG Bull. 95, 1495 (2011).
https://doi.org/10.1306/01191110017

[67] P Malié, J Bailleul, F Chanier, R Toullec, G Mahieux, V Caron, B Field, R Ferreiro Mählmann, S Potel, Spatial distribution and tectonic framework of fossil tubular concretions as onshore analogues of cold seep plumbing systems, North Island of New Zealand, BSGF 188, 25 (2017).
https://doi.org/10.1051/bsgf/2017192

[68] S J Watson, J J Mountjoy, P M Barnes, et al., Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, Geology 48, 56 (2020).
https://doi.org/10.1130/G46666.1

[69] R Luff, K Wallmann, Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances, Geochim. Cosmochim. Ac. 67, 3403 (2003).
https://doi.org/10.1016/S0016-7037(03)00127-3

[70] G Aloisi, K Wallmann, S M Bollwerk, A Derkachev, G Bohrmann, E Suess, The effect of dissolved barium on biogeochemical processes at cold seeps, Geochim. Cosmochim. Ac. 68, 1735 (2004).
https://doi.org/10.1016/j.gca.2003.10.010

[71] R Luff, K Wallmann, G Aloisi, Numerical modeling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities, Earth Planet. Sci. Lett. 221, 337 (2004).
https://doi.org/10.1016/S0012-821X(04)00107-4

[72] R Luff, J Greinert, K Wallmann, I Klaucke, E Suess, Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites, Chem. Geol. 216, 157 (2005).
https://doi.org/10.1016/j.chemgeo.2004.11.002

[73] D Karaca, C Hensen, K Wallmann, Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica, Geochem. Geophys. Geosyst. 11, Q08S27 (2010).
https://doi.org/10.1029/2010GC003062

[74] D Karaca, T Schleicher, C Hensen, P Linke, K Wallmann, Quantification of methane emission from bacterial mat sites at Quepos Slide offshore Costa Rica, Int. J. Earth Sci. 103, 1817 (2014).
https://doi.org/10.1007/s00531-012-0839-3

[75] J-P Blouet, S Arndt, P Imbert, P Regnier, Are seep carbonates quantitative proxies of CH4 leakage? Modeling the influence of sulfate reduction and anaerobic oxidation of methane on pH and carbonate precipitation, Chem. Geol. 577, 120254 (2021).
https://doi.org/10.1016/j.chemgeo.2021.120254

[76] J Cartwright, M Huuse, A C Aplin, Seal bypass system, AAPG Bull. 91, 1141 (2007).
https://doi.org/10.1306/04090705181

[77] A L Walters, J Phillips, R J Brown, M Field, T Gernon, G Stripp, R S J Sparks, The role of fluidisation in the formation of volcaniclastic kimberlite: Grain size observations and experimental investigation, J. Volcanol. Geoth. Res. 155, 119 (2006).
https://doi.org/10.3917/lfa.155.0119

[78] A Nermoen, O Galland, E Jettestuen, K Fristad, Y Podladchikov, H Svensen, A Malthe-Søørenssen, Experimental and analytic modeling of piercement structures, J. Geophys. Res. Sol. Earth 115, (2010).
https://doi.org/10.1029/2010JB007583

[79] A Mazzini, A Nermoen, M Krotkiewski, Y Podladchikov, S Planke, H Svensen, Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia, Mar. Petrol. Geol. 26, 1751 (2009).
https://doi.org/10.1016/j.marpetgeo.2009.03.001

[80] G Varas, V Vidal, J C Géminard, Dynamics of crater formations in immersed granular materials, Phys. Rev. E 79, 021301 (2009).
https://doi.org/10.1103/PhysRevE.79.021301

[81] F May, M Warsitzka, N Kukowski, Analogue modelling of leakage processes in unconsolidated sediments, Int. J. Greenh. Gas Cont. 90, 102805 (2019).
https://doi.org/10.1016/j.ijggc.2019.102805

[82] S Poppe, E P Holohan, O Galland, N Buls, G Van Gompel, B Keelson, P Y Tournigand, J Brancart, D Hollis, A Nila, M Kervyn, An inside perspective on magma intrusion: Quantifying 3D displacement and strain in laboratory experiments by dynamic X-ray computed tomography, Front. Earth Sci. 7, 62 (2019).
https://doi.org/10.3389/feart.2019.00062

[83] R Semer, J A Adams, K R Reddy, An experimental investigation of air flow patterns in saturated soils during air sparging, Geotech. Geol. Eng. 16, 59 (1998).

[84] H Darcy, Les fontaines publiques de la ville de Dijon: Exposition et application des principes a suivre et des formules a employer dans les questions de distribution d'eau, Librairie des corps impériaux des ponts et chaussées et des mines, Paris (1856).

[85] G I Taylor, P G Saffman, A note on the motion of bubbles in a Hele-Shaw cell and porous medium, Q. J. Mech. Appl. Math. 12, 265 (1959).
https://doi.org/10.1093/qjmam/12.3.265

[86] R Mourgues, P R Cobbold, Sandbox experiments on gravitational spreading and gliding in the presence of fluid overpressures, J. Struc. Geol. 28, 887 (2006).
https://doi.org/10.1016/j.jsg.2005.12.013

[87] W Ji, A Dahmani, D P Ahlfeld, J Ding Lin, E Hill III, Laboratory study of air sparging: Air flow vizualization, Groundwater Monit. Remed. 13, 115 (1993).
https://doi.org/10.1111/j.1745-6592.1993.tb00455.x

[88] K R Reddy, S Kosgi, J Zhou, A review of in situ air sparging for the remediation of VOC contaminated saturated soils and groundwater, Hazard. Waste Hazard. 12, 97 (1995).
https://doi.org/10.1089/hwm.1995.12.97

[89] M Stöhr, A Khalili, Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media, Phys. Rev. E 73, 036301 (2006).
https://doi.org/10.1103/PhysRevE.73.036301

[90] Z Sun, C Santamarina, Grain-displacive gas migration in fine-grained sediments, J. Geophys. Res. 124, 2274 (2019).
https://doi.org/10.1029/2018JB016394

[91] M J Dalbe, R Juanes, Morphodynamics of fluid-fluid displacement in three-dimensional deformable granular media, Phys. Rev. Appl. 9, 024028 (2018).
https://doi.org/10.1103/PhysRevApplied.9.024028

[92] S E Mena, F Brunier-Colin, J S Curtis, P Philippe, Experimental observation of two regimes of expansion in localized fluidization of a granular medium, Phys. Rev. E 98, 042902 (2018).
https://doi.org/10.1103/PhysRevE.98.042902

[93] P Philippe, M Badiane, Localized fluidization in a granular medium, Phys. Rev. E 87, 042206 (2013).
https://doi.org/10.1103/PhysRevE.87.042206

[94] M Sarabian, M Firouznia, B Metzger, S Hormozi, Fully developed and transient concentration profiles of particulate suspensions sheared in a cylindrical Couette cell, J. Fluid Mech. 862, 659 (2019).
https://doi.org/10.1017/jfm.2018.982

[95] M H Köhl, G Lu, J R Third, M Häberlin, L Kasper, K P Prüssmann, C R Müller, Magnetic resonance imaging (MRI) study of jet formation in packed beds, Chem. Eng. Sci. 97, 406 (2013).
https://doi.org/10.1016/j.ces.2013.04.046

[96] É Guazzelli, O Pouliquen, Rheology of dense particle suspensions, J. Fluid Mech. 852, P1 (2018).
https://doi.org/10.1017/jfm.2018.548

[97] D L Connolly, Visualization of vertical hydrocarbon migration in seismic data: Case studies from the Dutch North Sea, Interpretation 3, 21 (2015).
https://doi.org/10.1190/INT-2015-0007.1

[98] J S Jordan, M A Hesse, J F Rudge, On mass transport in porosity waves, Earth Planet. Sci. Lett. 485, 65 (2018).
https://doi.org/10.1016/j.epsl.2017.12.024

[99] G A Peshkov, L A Khakimova, E V Grishko, M Wangen, V M Yarushina, Coupled basin and hydro-mechanical modeling of gas chimney formation: The SW Barents Sea, Energies 14, 6345 (2021).
https://doi.org/10.3390/en14196345

[100] L Räss, V M Yarushina, N S C Simon, Y Y Podladchikov, Chimneys, channels, pathway flow or water conducting features - An explanation from numerical modelling and implications for CO2 storage, Energy Proc. 63, 3761 (2014).
https://doi.org/10.1016/j.egypro.2014.11.405

[101] L Räss, N S C Simon, Y Y Podladchikov, Spontaneous formation of fluid escape pipes from subsurface reservoirs, Sci. Rep. 8, 11116 (2018).
https://doi.org/10.1038/s41598-018-29485-5

[102] G C Richard, S Kanjilal, H Schmeling, Solitary-waves in geophysical two-phase viscous media: A semi-analytical solution, Phys. Earth Planet. Int. 198, 61 (2012).
https://doi.org/10.1016/j.pepi.2012.03.001

[103] M Tian, J J Ague, The impact of porosity waves on crustal reaction progress and CO2 mass transfer, Earth Planet. Sci. Lett. 390, 80 (2014).
https://doi.org/10.1016/j.epsl.2013.12.044

[104] V M Yarushina, Y Y Podladchikov, (De)compaction of porous viscoelastoplastic media: Model formulation, J. Geophys. Res. Sol. Earth 120, 4146 (2015).
https://doi.org/10.1002/2014JB011258

[105] V M Yarushina, Y Y Podladchikov, J A D Connolly, (De)compaction of porous viscoelastoplastic media: Solitary porosity waves, J. Geophys. Res. Sol. Earth 120, 4843 (2015).
https://doi.org/10.1002/2014JB011260

[106] D M Audet, A C Fowler, A mathematical model for compaction in sedimentary basins, Geophys. J. Int. 110, 577 (1992).
https://doi.org/10.1111/j.1365-246X.1992.tb02093.x

[107] V Barcilon, F M Richter, Nonlinear-waves in compacting media, J. Fluid Mech. 164, 429 (1986).
https://doi.org/10.1017/S0022112086002628

[108] J A D Connolly, Y Y Podladchikov, Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins, Tectonophysics 324, 137 (2000).
https://doi.org/10.1016/S0040-1951(00)00084-6

[109] J Dohmen, H Schmeling, J P Kruse, The effect of effective rock viscosity on 2-D magmatic porosity waves, Solid Earth 10, 2103 (2019).
https://doi.org/10.5194/se-10-2103-2019

[110] J A D Connolly, Y Y Podladchikov, Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation, J. Geophys. Res. Sol. Earth 112, 10205 (2007).
https://doi.org/10.1029/2005JB004213

[111] L Räss, T Duretz, Y Y Podladchikov, Resolving hydromechanical coupling in two and three dimensions: Spontaneous channelling of porous fluids owing to decompaction weakening, Geophys. J. Int. 218, 1591 (2019).
https://doi.org/10.1093/gji/ggz239

[112] V M Yarushina, Y Y Podladchikov, H Wang, Model for (de)compaction and porosity waves in porous rocks under shear stresses, J. Geophys. Res. Sol. Earth 125, e2020JB019683 (2020).
https://doi.org/10.1029/2020JB019683

[113] L I Dimitrov, Mud volcanoes-the most important pathway for degassing deeply buried sediments, Earth Sci. Rev. 59, 49 (2002).
https://doi.org/10.1016/S0012-8252(02)00069-7

[114] A J Kopf, Making calderas from mud, Nat. Geosci. 1, 500 (2008).
https://doi.org/10.1038/ngeo256

[115] S Zhong, J Zhang, J Luo, Y Yuan, P Su, Geological characteristics of mud volcanoes and diapirs in the Northern Continental Margin of the South China Sea: Implications for the mechanisms controlling the genesis of fluid leakage structures, Geofluids 2021, 5519264 (2021).
https://doi.org/10.1155/2021/5519264

[116] F Dubois, M Jean, M Renouf, R Mozul, A Martin, et al., LMGC90. 10e colloque national en calcul des structures, hal-00596875, Giens (France) (2011).

[117] F Dubois, R Mozul, LMGC90. 11e coli. 137, 104429 (2020).
https://doi.org/10.1016/j.cageo.2020.104429

[118] M Constant, N Coppin, F Dubois, V Vidal, V Legat, J Lambrechts, Simulation of air invasion in immersed granular beds with an unresolved FEM-DEM model, Comput. Par. Mech. 8, 535 (2020).
https://doi.org/10.1007/s40571-020-00351-4

[119] R Mourgues, P R Cobbold, Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling, Tectonophysics 376, 75 (2003).
https://doi.org/10.1016/S0040-1951(03)00348-2

[120] P Horsrud, E F Sonstebo, R Boe, Mechanical and petrophysical properties of North Sea shales, Int. J. Rock Mech. Min. 35, 1009 (1998).
https://doi.org/10.1016/S0148-9062(98)00162-4

[121] M Wangen, A 3D model for chimney formation in sedimentary basins, Comp. Geosci. 137, 104429 (2020).
https://doi.org/10.1016/j.cageo.2020.104429

[122] M Huuse, S J Shoulders, D I Netoff, J Cartwright, Giant sandstone pipes record basin-scale liquefaction of buried dune sands in the Middle Jurassic of SE Utah, Terra Nova 17, 80 (2005).
https://doi.org/10.1111/j.1365-3121.2004.00587.x

[123] K S Roberts, R J Davies, S A Stewart, Structure of exhumed mud volcano feeder complexes, Azerbaijan, Basin Res. 22, 439 (2010).
https://doi.org/10.1111/j.1365-2117.2009.00441.x

[124] J M Valverde, A Castellanos, Types of gas fluidization of cohesive granular materials, Phys. Rev. E 75, 031306 (2007).
https://doi.org/10.1103/PhysRevE.75.031306

[125] M Warsitzka, N Kukowski, F May, Fluid overpressure driven sediment mobilisation and its risk for the integrity for CO2 storage sites - An analogue modelling approach, Energy Procedia 114, 3291 (2017).
https://doi.org/10.1016/j.egypro.2017.03.1461

[126] O Galland, G R Gisler, Ø T Haug, Morphology and dynamics of explosive vents through cohesive rock formations, J. Geophys. Res. Sol. Earth 119, 4708 (2014).
https://doi.org/10.1002/2014JB011050

[127] A Seiphoori, A Gunn, S Kosgodagan Acharige, P E Arratia, D J Jerolmack, Tuning sedimentation through surface charge and particle shape, Geophys. Res. Lett. 48, e2020GL091251 (2021).
https://doi.org/10.1029/2020GL091251