[1] H C Nataf, J Sommeria, La physique et la Terre, Belin, Paris (2000).

[2] F Lechenault, La transition de" Jamming" dans un milieu granulaire bidimensionnel: Statique et dynamique d'un système athermique modèle, PhD thesis, Université Paris Sud - Paris XI (2007).

[3] É Guyon, J-Y Delenne, F Radjaı̈, Built on sand: The science of granular materials, The MIT Press, Cambridge MA (2020).

[4] GDR MiDi, On dense granular flows, Eur. Phys. J. E 14, 341 (2004).

[5] P Jop, Y Forterre, O Pouliquen, A constitutive law for dense granular flows, Nature 441, 727 (2000).

[6] O Coquand, M Sperl, Rheology of granular liquids in extensional flows: Beyond the μ (i)-law, Phys. Rev. E 104, 014604 (2021).

[7] A J Liu, S R Nagel, Jamming is not just cool any more, Nature 396, 21 (1998).

[8] C S O'Hern, L E Silbert, A J Liu, S R Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68, 011306 (2003).

[9] D Bi, J Zhang, B Chakraborty, R P Behringer, Jamming by shear, Nature 480, 355 (2011).

[10] Y Zhao, J Barés, H Zheng, J E S Socolar, R P Behringer, Shear-jammed, fragile, and steady states in homogeneously strained granular materials, Phys. Rev. Lett. 123, 158001 (2019).

[11] J F Archard, Elastic deformation and the laws of friction, Proc. Roy. Soc. Lond. A Mat. 243, 190 (1957).

[12] K L Johnson, Contact mechanics, Cambridge University Press, Cambridge (1985).

[13] T-L Vu, J Barés, S Mora, S Nezamabadi, Deformation field in diametrically loaded soft cylinders, Exp. Mech. 59, 453 (2019).

[14] A Kabla, J Scheibert, G Debregeas, Quasi- static rheology of foams. Part 2. Continuous shear flow, J. Fluid Mech. 587, 45 (2007).

[15] W H Rhodes, Phase chemistry in the development of transparent polycrystalline oxides, In: Phase diagrams in advanced ceramics, Ed. A M Alper, Pag. 1, Academic Press, Cambridge MA (1995).

[16] M J O'Sullivan, T-K N Phung, J-A Park, Bronchoconstriction: A potential missing link in airway remodelling, Open Biol. 10, 200254 (2020).

[17] T-L Vu, J Barés, Soft-grain compression: Beyond the jamming point, Phys. Rev. E 100, 042907 (2019).

[18] L A Taber, Nonlinear theory of elasticity: Applications in biomechanics, World Scientific, Singapour (2004).

[19] J Jose, G A Blab, A Van Blaaderen, A Imhof, Jammed elastic shells - A 3D experimental soft frictionless granular system, Soft Matter 11, 1800 (2015).

[20] A Boromand, A Signoriello, F Ye, C S O'Hern, M D Shattuck, Jamming of deformable polygons, Phys. Rev. Lett. 121, 248003 (2018).

[21] B Florijn, C Coulais, M van Hecke, Programmable mechanical metamaterials, Phys. Rev. Lett. 113, 175503 (2014).

[22] P M Reis, H M Jaeger, M Van Hecke, Designer matter: A perspective, Extreme Mech. Lett. 5, 25 (2015).

[23] D Hernández-Enrı́quez, G Lumay, F Pacheco-Vázquez, Discharge of repulsive grains from a silo: Experiments and simulations, EPJ Web of Conf. 140, 03089 (2017).

[24] M Cox, D Wang, J Barés, R P Behringer, Self-organized magnetic particles to tune the me- chanical behavior of a granular system, Europhys. Lett. 115, 64003 (2016).

[25] R Höhler, S Cohen-Addad, Rheology of liquid foam, J. Phys.: Condens. Mat. 17, R1041 (2005).

[26] G Debrégeas, H Tabuteau, J-M Di Meglio, Deformation and flow of a two-dimensional foam under continuous shear, Phys. Rev. Lett. 87, 178305 (2001).

[27] M Asipauskas, M Aubouy, J A Glazier, F Graner, Y Jiang, A texture tensor to quantify deformations: The example of two-dimensional flowing foams, Granul. Matter 5, 71 (2003).

[28] R J Clancy, E Janiaud, D Weaire, S Hutzler, The response of 2D foams to continuous applied shear in a couette rheometer, Eur. Phys. J. E 21, 123 (2006).

[29] D Weaire, V Langlois, M Saadatfar, S Hutzler, Foam as granular matter, In: Granular and complex materials, Eds. T Aste, A Tordesillas, T Di Matteo, Pag. 1, World Scientific, Singapour (2007).

[30] J Brujić, S F Edwards, D V Grinev, I Hopkinson, D Brujić, H A Makse, 3D bulk measurements of the force distribution in a compressed emulsion system, Faraday discuss. 123, 207 (2003).

[31] K A Newhall, L L Pontani, I Jorjadze, S Hilgenfeldt, J Brujic, Size-topology relations in packings of grains, emulsions, foams, and biological cells, Phys. Rev. Lett. 108, 268001 (2012).

[32] T Krebs, D Ershov, C G P H Schroen, R M Boom, Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy, Soft Matter 9, 4026 (2013).

[33] R Höhler, D Weaire, Can liquid foams and emulsions be modeled as packings of soft elastic particles?, Adv. Colloid Interfac. 263, 19 (2019).

[34] A R Cooper Jr., L E Eaton, Compaction behavior of several ceramic powders, J. Am. Ceram. Soc. 45, 97 (1962).

[35] K Kawakita, K-H Lüdde, Some considerations on powder compression equations, Powder Technol. 4, 61 (1971).

[36] C-Y Wu, O M Ruddy, A C Bentham, B C Hancock, S M Best, J A Elliott, Modelling the mechanical behaviour of pharmaceutical powders during compaction, Powder Technol. 152, 107 (2005).

[37] J Fan, S-H Kim, Z Chen, S Zhou, E Amstad, T Lin, D A Weitz, Creation of faceted polyhedral microgels from compressed emulsions, small 13, 1701256 (2017).

[38] J-A Park, J H Kim, D Bi, J A Mitchel, N T Qazvini, et al., Unjamming and cell shape in the asthmatic airway epithelium, NatureMater. 14, 1040 (2015).

[39] T P J Wyatt, A R Harris, et al., Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along thelong cell axis, Proc. Natl. Acad. Sci. USA 112, 5726 (2015).

[40] J Mauer, S Mendez, L Lanotte, F Nicoud, M Abkarian, G Gompper, D A Fedosov, Flow induced transitions of red blood cell shapes under shear, Phys. Rev. Lett. 121, 118103 (2018).

[41] S Nezamabadi, T H Nguyen, J-Y Delenne, F~Radjai, Modeling soft granular materials, Granul. Matter 19, 1 (2017).

[42] D Wang, J D Treado, A Boromand, B Norwick, M P Murrell, M D Shattuck, C S O'Hern, The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions, Soft Matter 17, 9901 (2021).

[43] G Mollon, Mixtures of hard and soft grains: Micromechanical behavior at large strains, Granul. Matter 20, 1 (2018).

[44] T-L Vu, J Barés, S Mora, S Nezamabadi, Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments, Phys. Rev. E 99, 062903 (2019).

[45] D Cantor, M Cárdenas-Barrantes, I Preechawuttipong, M Renouf, E Azéma, Compaction model for highly deformable particle assemblies, Phys. Rev. Lett. 124, 208003 (2020).

[46] M Cárdenas-Barrantes, D Cantor, J Barés, M Renouf, E Azéma, Three-dimensional compaction of soft granular packings, Soft Matter 18, 312 (2022).

[47] M van Hecke, Jamming of soft particles: Geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Mat. 22, 033101 (2009).

[48] S Torquato, F H Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Rev. Mod. Phys. 82, 2633 (2010).

[49] L E Silbert, Jamming of frictional spheres and random loose packing, Soft Matter 6, 2918 (2010).

[50] R W Heckel, Density-pressure relationships in powder compaction, Trans. Metall Soc. AIME 221, 671 (1961).

[51] K T Kim, M M Carroll, Compaction equations for strain hardening porous materials, Int. J. Plasticity 3, 63 (1987).

[52] J Secondi, Modelling powder compaction: From a pressure-density law to continuum mechanics, Powder Metall. 45, 213 (2002).

[53] R Cabiscol, H Shi, I Wünsch, V Magnanimo, J H Finke, S Luding, A Kwade, Effect of particle size on powder compaction and tablet strength using limestone, Adv. Powder Technol. 31, 1280 (2020).

[54] D Bi, J H Lopez, J M Schwarz, L M Manning, Energy barriers and cell migration in densely packed tissues, Soft Matter 10, 1885 (2014).

[55] K E Daniels, N W Hayman, Force chains in seismogenic faults visualized with photoelastic granular shear experiments, J. Geophys. Res.: Solid Earth 113, B11411 (2008).

[56] J Barés, D Wang, D Wang, T Bertrand, C S O'Hern, R P Behringer, Local and global avalanches in a two-dimensional sheared granular medium, Phys. Rev. E 96, 052902 (2017).

[57] A Abed-Zadeh, J Barés, R P Behringer, Crackling to periodic dynamics in granular media, Phys. Rev. E 99, 040901 (2019).

[58] N Brodu, J A Dijksman, R P Behringer, Spanning the scales of granular materials through microscopic force imaging, Nat. Commun. 6, 1 (2015).

[59] K E Daniels, J E Kollmer, J G Puckett, Photoelastic force measurements in granular materials, Rev. Sci. Instrum. 88, 051808 (2017).

[60] A Abed-Zadeh, J Barés, T A Brzinski, K E Daniels, et al., Enlightening force chains: A review of photoelasticimetry in granular mat- ter, Granul. Matter 21, 1 (2019).

[61] P Jongchansitto, X Balandraud, M Grédiac, C Beitone, I Preechawuttipong, Using infrared thermography to study hydrostatic stress networks in granular materials, Soft Matter 10, 8603 (2014).

[62] R Hurley, E Marteau, G Ravichandran, J E Andrade, Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity, J. Mech. Phys. Solids 63, 154 (2014).

[63] M Cárdenas-Barrantes, J Barés, M Renouf, E. Azéma, Experimental validation of a micromechanically-based compaction law for soft/hard grain mixtures, arXiv Preprint, arXiv:2111.01568 (2021).

[64] G Mollon, The soft discrete element method, Granul. Matter 24, 1 (2022).

[65] I Agnolin, J N Roux, On the elastic moduli of three-dimensional assemblies of spheres: Characterization and modeling of fluctuations in the particle displacement and rotation, Int. J Solids Struct. 45, 1101 (2008).

[66] R T Bonnecaze, M Cloitre, Micromechanics of soft particle glasses, In: High solid dispersions. Advances in polymer science 236, Ed. M Cloitre, Pag. 117, Springer, Berlin, Heidelberg (2010).

[67] J Lopera-Perez, C Kwok, K Senetakis, Micromechanical analyses of the effect of rubber size and content on sand-rubber mixtures at the critical state, Geotext. Geomembranes 45, 81 (2017).

[68] D O Potyondy, P A Cundall, A bonded-particle model for rock, Int. J. Rock Mech. Min. 41, 1329 (2004).

[69] S Utili, R Nova, DEM analysis of bonded granular geomaterials, Int. J. Numer. Anal. Met. 32, 1997 (2008).

[70] N Cho, C D Martin, D C Sego, A clumped particle model for rock, Int. J. Rock Mech. Min. 44, 997 (2007).

[71] M Asadi, A Mahboubi, K Thoeni, Discrete modeling of sand-tire mixture considering grain-scale deformability, Granul. Matter 20, 1 (2018).

[72] Y Chélin, K Azzag, P Cañadas, J Averseng, S Baghdiguian, B Maurin, Simulation of cellular packing in non-proliferative epithelia, J. Biomech. 46, 1075 (2013).

[73] A T Procopio, A Zavaliangos, Simulation of multi-axial compaction of granular media from loose to high relative densities, J. Mech. Phys. Solids 53, 1523 (2005).

[74] B Harthong, J-F Jérier, P Dorémus, D Imbault, F-V Donzé, Modeling of high-density compaction of granular materials by the discrete element method, Int. J. Solids Struct. 46, 3357 (2009).

[75] F Huang, X An, Y Zhang, A B Yu, Multiparticle FEM simulation of 2D compaction on binary Al/SiC composite powders, Powder Technol. 314, 39 (2017).

[76] D Wang, X An, P Han, H Fu, X Yang, Q Zou, Particulate scale numerical investigation on the compaction of TiC-316L composite powders, Math. Probl. Eng. 2020, 1 (2020).

[77] D T Gethin, R W Lewis, R S Ransing, A discrete deformable element approach for the compaction of powder systems, Modelling Simul. Mater. Sci. Eng. 11, 101 (2002).

[78] X J Xin, P Jayaraman, G S Daehn, R H Wagoner, Investigation of yield surface of monolithic and composite powders by explicit finite element simulation, Int. J. Mech. Sci. 45, 707 (2003).

[79] G Frenning, Towards a mechanistic contact model for elastoplastic particles at high relative densities, Finite Elem. Anal. Des. 104, 56 (2015).

[80] J Moreau, Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids 13, 93 (1994).

[81] M Jean, The non-smooth contact dynamics method, Comp. Meth. App. Mech. Eng. 177, 235 (1999).

[82] S D Mesarovic, N A Fleck, Frictionless indentation of dissimilar elastic-plastic spheres, Int. J. Solids Struct. 37, 7071 (2000).

[83] Y Chen, D Imbault, P Dorémus, Numerical simulation of cold compaction of 3D granular packings, Materials Science Forum 534, 301 (2007).

[84] V Acary, M Jean, Numerical simulation of monuments by the contact dynamics method, Monument-98, Workshop on seismic performance of monuments, Pag. 69, Lisbon - Portugal (1998).

[85] H-P Cao, Modélisation par éléments discrets rigides et/ou déformables des milieux granulaires et des troisiémes corps solides : Influence du comportement local sur le comportement global, PhD thesis in Mécanique - Génie Mécanique - Génie Civil, Lyon INSA, Lyon (2011).

[86] T-L Vu, S Nezamabadi, S Mora, Effects of particle compressibility on structural and mechanical properties of compressed soft granular materials, J. Mech. Phys. Solids 146, 104201 (2021).

[87] S Nezamabadi, X Frank, J Y Delenne, J Averseng, F Radjaı̈, Parallel implicit contact algorithm for soft particle systems, Comput. Phys. Commun. 237, 17 (2019).