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Challenges of ‘imaging’ particulate materials in three dimensions

Matthias Schröter 1,2∗, Chen Lyv 3, Jiayun Huang 3, Kai Huang 3,4†

In this perspective article, we discuss the challenges of imaging assemblies of particles in
three dimensions. Starting from a brief motivation for the investigation of particulate ma-
terials, we provide an overview of experimental approaches developed for imaging particles.
We list the challenges and existing solutions associated with X-ray tomography, one of the
standard methods to study statics. Subsequently, we discuss challenges and opportunities
arising from emerging new techniques such as radar tracking and ‘smart’ tracers for ex-
ploring granular dynamics. We close with a tentative view on the outstanding problems
and potential solutions in the future.

I Introduction

Nothing is built on stone;
all is built on sand,

but we must build as if the sand were stone.

Found in In Praise of Darkness [1], this poet-
ical fragment by the legendary Argentine writer
Jorge Luis Borges can be seen to vividly describe
the influence of sand grains on the civilization pro-
cess thatspans the past centuries and continues into
the present [2]. According to European Aggregates
Association, aggregates (e.g., sands, pebbles, and
grains) are by far the most used raw materials in
the world, with a demand of about 6 tonnes per
capita per year [3]. Despite the ubiquity, the ques-
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tion of how to ‘build as if the sand were stones’
actually touches one of the major challenges in un-
derstanding particulate materials: how to describe
them as continuum.

From a historical perspective, particulate materi-
als often act as an essential component in different
philosophies and world views, across cultures. Tak-
ing the pictograph in Chinese as an example, the
word ‘sand’ in one of its ancient forms, as over-
laid in the center of Fig. 1, provides insight re-
garding how ancient Chinese envisioned particu-
late materials: a composition of small dots that
mimic sand grains at a ‘microscopic’ level, to-
gether with curved lines that represent the ripples
formed by the ‘macroscopic’ collective motion of
sand grains. It is one of the first few hundreds
of words found in the early stages of Chinese lan-
guage evolution, roughly 3400 years ago. Apart
from its influence on linguistics, the word ‘沙’
(pronounced [Shā]) touches on another challenge
in understanding granular dynamics: how to effec-
tively predict and control the collective behavior of
particulate materials from the perspective of ‘mi-
croscopic’ particle-particle interactions [5].

Challenges in deciphering granular statics and
dynamics provide an opportunity for physicists to
explore the ‘root’ of diverse applications in dif-
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Figure 1: A combination of ‘microscopic’ sand grains
and ‘macroscopic’ sand ripples forms the character
‘sand’ in Chinese (overlaid in the middle) as ap-
peared in bronze inscriptions over three millennia ago.
The ubiquity of particulate materials determines their
widespread applications in diverse disciplines, such as
(a) ecology (image courtesy of Freepik), (b) granula-
tion process in chemical engineering, (c) sculpturing
and construction (sculpture at the Chaka salt lake),
and (d) geo-science and space exploration (avalanches
on Mars) [4].

ferent disciplines. From the perspective of sus-
tainability, understanding the interactions between
plant roots and the surrounding soil sheds light on
ecological models [6] that can predict the conse-
quence of frequent droughts and flooding arising
from global warming (see Fig. 1(a)). In chemical
engineering, the granulation process (see Fig. 1(b))
is a typical example where energy dissipation at
particle level determines the efficiency and quality
of the final products [7, 8]. In this type of highly
dynamical, three-dimensional multi-phase flow sys-
tems, it is extremely helpful to follow tracer parti-
cles for an adequate calibration of computer sim-
ulations, which can in turn make essential pre-
dictions to enhance efficiency and to avoid acci-
dents [9–11]. Making particle-particle interactions
attractive, e.g. by adding small amounts of liquids,
makes particulate materials perfect for sculpturing,
as illustrated by the sculpture made of salt grains
(see Fig. 1(c)). Finally, the frost avalanche ob-
served on Mars (see Fig. 1(d)) is an another exam-
ple demonstrating the link between granular solid-
liquid-like transition [12] and geo-sciences. Un-

derstanding this connection sheds light not only
on the triggering mechanism of natural disasters
such as earthquakes, snow avalanches, and land-
slides [13,14], but also on the evolution of planetary
landscape for understanding planet formation and
for future space exploration [15–18]. In short, the
development of granular physics in the past decades
has helped build a framework that can effectively
connect diverse research disciplines and relevant in-
dustrial sectors. This process has fostered exchange
of knowledge and techniques across disciplines and
from theoretical, numerical and experimental per-
spectives.

Describing particulate materials in solid, liquid,
or gas like states as continuum is a major challenge
that has triggered the development of various ex-
perimental techniques to ‘see through sand’. One
of the difficulties in formulating such continuum de-
scriptions, is the energy dissipation at the ‘micro-
scopic’ particle level due to inelastic collisions and
friction. Consequently, external energy injection is
needed to maintain a fluid-like state: granular flu-
ids are typically driven out of thermodynamic equi-
librium and thus statistical mechanics tools can-
not be readily used [12,19,20]. However, there has
been substantial progress in establishing theoreti-
cal frameworks for the dynamical and static behav-
ior of particulate materials: from dilute gases of
smooth and spherical particles [21, 21–25] to dense
granular flow [26,27]; from scaling analysis [28–30]
via Edwards statistical mechanics [31, 32] to quan-
titative model for non-local rheology [33–35]. In
parallel, there have been substantial efforts in op-
timizing various numerical approaches to under-
stand granular flow from both fundamental and
applications perspectives (see, e.g., a recent edito-
rial [36]). There are excellent reviews and mono-
graphs in this direction (see, e.g., [37–40]) along
with well established open source simulation pack-
ages for simulating particulate materials, such as
LAMMPS, MecuryDPM, LIGGGHTS [41–43] for
interested readers to explore further.

The development of theoretical and numerical
methods is closely associated with lab experiments,
or lab simulations, as they are called in some disci-
plines (see e.g. [44]). The latter play an indispens-
able role in testing theories and calibrating numer-
ical models at both ‘microscopic’ particle-particle-
interaction and ‘macroscopic’ collective behavior
levels, see, e.g. [37, 45].
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Granular materials are typically opaque and
challenging to be ‘seen’ through. In a previous
overview article [9], techniques to acquire particle
properties in both two- (2D) and three-dimensional
(3D) systems were summarized according to their
applications. Detailed descriptions of correspond-
ing techniques were provided in the accompanying
special issue [46–54]. Here, those imaging tech-
niques, along with newly developed ones in recent
years, are categorized based on exploring static or
dynamical properties of particulate materials with
in-depth discussions on three representative exam-
ples. In light of the overarching goal of this focus
series, we focus on challenges and opportunities as-
sociated with imaging techniques in the two cate-
gories.

II A classification of ‘imaging’ tech-
niques

We first provide an overview of the available tech-
niques to ‘see’ through particulate materials in
3D; in doing so we will use the word ‘imaging’
in a quite liberal sense. As sketched in Fig. 2(a),
those techniques typically involve sending electro-
magnetic (EM) waves that effectively penetrate the
sample. Based on an analysis of the reflected, scat-
tered, or penetrating signal, one collects local infor-
mation such as position and velocities of the parti-
cles. Most of the techniques can be sorted accord-
ing to the frequency of the EM waves being used,
as shown in Fig. 2(b).

In addition to EM waves, acoustic waves have
also been used as a non-destructive evaluation
(NDE) tool for probing, e.g. shear-jamming in
dense suspensions [55], precursors of granular fail-
ure [56] or the network topology of force chains [57].
Last but not least, Fig. 2(c) illustrates a new tech-
nique involving ‘smart’ tracers with embedded sen-
sors capable of collecting and transmitting digital
data through on-board micro-controllers and wire-
less communications. This approach falls into a
different category because EM waves are not used
for probing, but rather for data transmission.

For static packings, scanning techniques such as
magnetic resonance imaging (MRI) [53], X-ray to-
mography (X-Ray Tomo) [54], and refractive index
matching scanning (RIMS) [50] can provide the de-
tails of the internal structure of a granular packing.
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Figure 2: (a) A sketch illustrating physical mechanisms
associated with ‘imaging’ particles. (b) Experimental
methods to probe static (blue text) or dynamic (red
text) or both types of properties (blue transitioning to
red) of particulate materials in the bulk, by the wave-
length of the electromagnetic radiation being used. (c)
A ‘smart’ tracer capable of monitoring local properties
and transmitting digital data via wireless communica-
tions.

However, it is not always straightforward to extract
the physical quantities from the large amount of
raw data provided by these three-dimensional tech-
niques. Moreover, all of these techniques are com-
paratively slow, which limits their ability to capture
fast dynamics. This topic will be further elaborated
in subsection IIIi.

Scattering methods have also been used to de-
termine the internal structure of granular media.
Given the size range of granular particles (tens of
microns to a few millimeters), terahertz waves are
suitable for detecting internal structures and their
changes in response to external disturbances[48].
By means of diffusion wave spectroscopy with visi-
ble lights, we can now detect spatially resolved in-
ternal structure changes, thereby paving the way
to characterize transient dynamics [47].

Optical imaging is the most widely used tech-
nique to explore granular dynamics in applications
ranging from chemical engineeringto geoscience and
geotechnics to space exploration. It is readily avail-
able and typically no special treatments of the par-
ticles is needed for the analysis. However, due to
the opacity of the sample, optical imaging can only
characterize the dynamics of particles on the sur-
face or close to the surface in dense systems [46]
with one exception: If the particles are transpar-
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ent, and they can be surrounded by a liquid of the
same index of refraction, the light sheet scanning
technique (RIMS) can be used to observe the bulk
of the sample [50].

To explore granular dynamics in the bulk, tracer
particles are typically used. This can be done
by means of positron emission particle tracking
(PEPT) [11,52], radio particle tracking (RPT) [58],
magnetic particle tracking (MPT) [59,60], or radar
particle tracking [51, 61]. Challenges associated
with particle tracking techniques will be discussed
in subsection IIIii.

Different from existing reviews [9, 10], the goal
of this perspective article is to focus on challenges
that are not yet fully resolved, based on which po-
tentially promising solutions are discussed to pave
the way for further investigations of particulate ma-
terials and beyond.

III Challenges and opportunities of
imaging particles

i Spatially resolved 3D imaging

The fundamental challenges in acquiring spatially-
resolved 3D images from the bulk, i.e. the inner
part, of a dense granular system using electromag-
netic waves include:

(A) The amount of information that has to be
gathered from the sample to create a full three-
dimensional image. If our desired resolution is m
micrometer per pixel and our region of interest has
a side length of l micrometer, we need to take im-
ages with (l/m)2 pixels. Now, if we want to mea-
sure a cubic volume of (l/m)3 voxels (the 3D equiv-
alent of pixels), we need αl/m images. The pre-
factor α ranges from 1 for RIMS, where we can
directly acquire neighboring slices, to

√
2 as fre-

quently used in X-ray tomography. In practice, l/m
typically ranges from 500 to 2000. Acquiring this
number of individual images is time-consuming.
Therefore, 3D imaging techniques are well suited to
study static granular packings but will have prob-
lems imaging fast granular dynamics where par-
ticles move with speeds above ≈ 0.01 diameters
per second. This definition encompasses granular
phenomena such as dynamical heterogeneities in
slowly driven systems, shear in split bottom cells,
dense flows in chutes, silos or down inclined planes,

avalanches and segregation in rotating drums, or
granular gases driven by electromagnetic shakers.

This imaging speed problem does not occur if
the dynamic process can be repeatedly stopped
and restarted, such as with grain breakage under
load [64, 65], or if the dynamics happens on the
timescales of several hours, i.e. much longer than
the typical acquisition times described below. Ex-
amples for this situation include creep under con-
stant load [66], root growth [67,68] or the formation
of ice lenses in frozen soil [67].

(B) The interaction between the waves and
the material the grains are made from should be
material-specific and enable the localization of the
measured signal. The latter condition is met by
some types of absorption or local excitation. In
contrast, refraction will not work for imaging be-
cause it will occur at all grain interfaces the waves
encounter. In consequence, the grains at the con-
tainer boundary will blur any image of deeper lay-
ers.

In order to make the subsequent discussion more
substantial, we will now focus on X-ray tomogra-
phy [69] as imaging modality. Regarding (A): First,
each imaging technique must strike a balance be-
tween the signal-to-noise ratio (SNR) of the images
and the time allowed to acquire an individual im-
age. We can measure the SNR by taking a series of
static images and computing the gray value distri-
bution of a pixel in the region of interest. The mean
of that distribution is the signal we are interested
in, and the standard deviation around that mean is
the measure for the noise in any individual image.
Because the generation of photons, their interac-
tion with the sample material, and their probability
of being detected in the camera are all stochastic
processes, the number of photons detected by any
given camera pixel will follow a Poisson distribu-
tion. For Poisson distributions the SNR is propor-
tional to

√
N , where N is the number of photons.

Due to its relevance for our own vision, mankind
has developed quite powerful sources of photons in
the optical range. This allows optical high speed
cameras to acquire hundreds of thousands of images
per second at good quality. Photon sources for X-
rays have only been explored since the work of Wil-
helm Röntgen in 1895. As discussed below, most of
the available sources are comparatively dim. Com-
bined with the fact that the imaging mechanism
is absorption, which further decreases N , a reason-
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Figure 3: Challenges in X-ray imaging. a) Material mixtures, which do not differ significantly in their attenuation
coefficients, can only be segmented by error-prone subsequent image processing. The panel shows as an example
a cross-section through a container with plant roots in soil using two different algorithms to identify the root:
green areas are roots found by both algorithm, red and yellow areas are found by only one of the two (adapted
from [62]). b) Beam hardening arising from the energy dependent attenuation of X-rays: The photon spectrum in
front and behind a sample differ qualitatively. This change is not accounted for by the algorithms presently used
to compute tomographic images (adapted from [63]). c) The panel shows a cross-section of a tomography of paper
clippings. The white area with the radially extending white streams is a beam hardening artifact originating
from (but not identical to) a metal paperclip contained in the sample. This type of beam hardening artifact
occurs if the sample contains particles made from a material with a higher periodic number than the rest.

able SNR often requires exposure times which make
it impossible to image moving objects without mo-
tion blur. Even worse, the high dynamic range nec-
essary for absorption imaging will often require the
acquisition of n images of the non-moving sample.
Averaging those images will then increase the SNR
by

√
n, however at the cost of increasing the acqui-

sition time by a factor of n.

In the following we discuss the different types of
X-ray tomography setups and the trade-off between
x-ray intensity and focal spot size. The former de-
termines the possible acquisition speed, the latter
the achievable resolution. As a rule of thumb, a res-
olution of 10 or more voxels per particle diameter
is necessary for a reliable detection of the particles.

A frequently used type is commercially built in-
house tomography setups. They typically require
exposure times in the range of 0.1 to 5 seconds for
each of the individual radiograms, depending on
the material and the desired image quality. For the
reconstruction of a 3D tomogram between 1400 and
2800 radiograms have to be taken while the sample
is rotated by 360◦ in total. Including time for the
rotation itself, typical scan durations range from 10
minutes to 4 hours.

As described above, the limiting factor is the X-
ray photon flux which comes from a small spot at
the anode: the size of this spot has to be smaller
than a pixel in order to avoid blurry images. Given
that 98 % of the kinetic energy of the electrons
impinging on the anode is converted to heat instead
of X-ray photons, the requirement is to not melt the
tungsten layer on the anode, which at the focal spot
limits the available photon flux.

To take the Nanotom from GE Sensing and In-
spection as an example, it has an X-ray tube with
50 W electrical power and an anode made from
synthetic diamond for good heat transfer and low
absorption. The focal spot sizes can be as small as
1 µm; in practice voxels with side lengths down to
3 µm can be realized with reasonable effort. The
scan of a granular sample composed of 200 µm di-
ameter glass spheres with a resolution of 5 µm per
voxel and a side length l of 5 mm requires about
135 minutes [70].

A presently emerging way to keep the focal spot
size small while effectively removing the heat is the
use of a jet of liquid metal as anode. Such X-ray
tubes are commercially available from the company
Excillum. However, these sources produce mostly
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low-energy X-ray photons which are more suitable
for medical than for materials science applications.
Moreover, due to the fluid nature of the anode, it
will be difficult to integrate these x-ray sources in
rotating gantry systems, i.e. systems where source
and camera rotate around a stationary sample (see
discussion below).
The next category are medical tomography se-

tups which trade some resolution for speed. Their
X-ray tubes use a fast rotating metal disk as anode
which results in the heat being spread out on a ring
with the thickness of the focal spot and a diame-
ter of several cm. This allows the use of electrical
power in the kW range, the corresponding X-ray
photon fluxes permitting the acquisition of full 3D
images in tens of seconds, which is still too slow to
observe most granular dynamics directly.
In medical tomography setups, the typical voxel

size is in the range between 0.2 mm [71, 72] and
0.6 mm [73,74]. Thus, the resolution of these medi-
cal setups rules out experiments with grains smaller
than 2 mm in diameter. One big advantage of med-
ical tomography setups is that they are rotating
gantry systems, i.e. the X-ray source and camera
move around the stationary sample (normally a hu-
man patient). This absence of centrifugal forces is a
necessary condition for tomographic studies of fast
granular dynamics.
The third category of tomography setups is sit-

uated at synchrotron sources which provide signifi-
cantly higher X-ray photon fluxes in a parallel beam
geometry. The latter allows acquisition of the ra-
diograms necessary for reconstruction while rotat-
ing the sample only by 180◦, unlike the 360◦ re-
quired in the cone-beam geometry of classical X-ray
tubes. Acquisition times for full 3D images range
from 15 s (beamline 2BM at the Advanced Photon
Source at the Argonne National Lab [75]) to 0.2 s
(beamline ID15A at the ESRF in Grenoble). How-
ever, taking 5 full tomographies per second requires
rotating the sample 2.5 times per second. Assum-
ing a container radius of 1 cm, this results in cen-
trifugal forces of 2.5 m/s2 at the sample boundary.
While it is possible to suppress the effect of this cen-
trifugal force by applying a strong enough confining
pressure on the sample, this confining pressure will
also suppress the types of granular dynamics de-
scribed above.
Finally, there are specialized setups with non-

rotating samples and significantly faster acquisition

times of 1000 [76, 77] to 2500 [78] radiograms per
second. But these are limited to only one or two
cross sections through the sample and do not pro-
vide a full 3D image. So in summary, standard
X-ray tomography as a method is more suitable to
study static samples than granular dynamics.

A speed-up of tomographic imaging can also be
achieved if prior information is used for the recon-
struction. For example, if the initial particle con-
figuration is known from a full 3D scan, a compar-
ison of experimentally measured, time resolved ra-
diograms and synthetic radiograms generated from
simulations can be used to describe the evolution
of the sample [79, 80]. Or, if the particles in the
sample are highly monodisperse spheres of known
radius, their apparent size in each radiogram can
be used to determine their full 3D positions [81].

Regarding B, one of the main advantages of X-
rays is that their index of refraction deviates only
by 10−6 or less from unity for all interesting solids
and fluids. In consequence, X-rays are (almost) not
refracted at any particle surface boundary1, thus all
the particles are, so to speak, index of refraction
matched. The signal retrieved from the absorption
within the sample is integrated along the straight
path the X-ray photons travel. There are two im-
portant practical considerations regarding the use
of absorption as imaging mechanism: beam hard-
ening and sample contrast.

Beam hardening describes the deviation from the
textbook situation where the X-ray beam is mono-
energetic and its attenuation can be described by
the Beer-Lambert law

I = I0e
−µ∆x (1)

where I0 and I are the intensities before and after
the sample of thickness ∆x, and µ is the absorp-
tion coefficient which depends on the material of
the sample. This exponential dependence is the
basis for the standard models for X-ray imaging,
both of the individual projection images, and the
3D reconstruction derived from those images.

However, X-ray sources are typically not mono-
energetic: they provide photons with a broad en-
ergy spectrum N(E), as illustrated by the blue flux

1For coherent X-ray sources such as synchrotrons and
with larger sample to detector distances, the remaining small
amount of refraction can actually be used to improve the
contrast in the images. This method is called phase contrast
tomography.
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curve in Fig. 3 b). At the same time, the attenu-
ation coefficient µ(Z,E) is not only a function of
the order number Z of the sample atoms, but also
of the photon energy E. In consequence, the X-
ray photon distribution is not only diminished but
also quantitatively changed after passing through
the sample, cf. the red curve in Fig. 3 b). Because
the weight of higher energy photons (i.e., ‘harder’
X-rays) increases, this effect is called beam hard-
ening.
Taking into account the energy-dependent sensi-

tivity S(E) of the detector, the measured intensity
I is described by:

I(x) ∝
∫

N(E) exp{−µ(E,Z)∆x} S(E) dE, (2)

which is quite different from Eq. 1.
In practice, it is challenging to implement 2. This

is not due to the energy dependence of µ, which
has been pre-computed by the National Institute
of Standards and Technology (NIST) and can be
downloaded from their website [82]. But S(E) and
N(E) are typically not known for a given tomogra-
phy setup.
If the sample is made from one material only,

it is possible to go back to Eq. 1 by using an ef-
fective attenuation coefficient µeff(Emax,∆x) which
depends on both the maximal X-ray energy Emax

and the thickness ∆x of the material. However, the
calibration procedure necessary to determine µeff is
time consuming and specific to a given experimen-
tal setup and sample material [63]. Additionally,
∆x now occurs explicitly and implicitly (via µeff)
in the exponent of the Beer-Lambert equation. De-
termining ∆x will therefore require iterative meth-
ods. This path is only followed for high precision
experiments [83].
The main problem in the context of this discus-

sion is that all algorithms which are used to com-
pute the 3D tomography from the stack of X-ray
images taken while rotating the sample are based
on Eq. 1. The discrepancy between Eq. 1 and
2 leads to various artifacts in the 3D reconstruc-
tion. One example is shown in Fig. 3 c): if the
sample contains particles which are made from el-
ements with higher order number Z, the recon-
struction will misrepresent their size and contain
brighter beams radiating from those particles. An-
other beam hardening artifact is cupping: objects
close to the boundary of the sample container will

appear brighter than identical objects in the center
of the container.

The ideal solution for beam hardening is to use
mono-energetic X-rays. However, this is only feasi-
ble in synchrotrons where, due to the abundance of
photons, it is possible to use crystals as monochro-
mators and still have a sufficient photon flux [84].
For in-house tomography setups, it is good practice
to position a filter, such as a sheet of copper with
a thickness of a few hundreds of µm, in front of
the anode. This will remove most of the lowest en-
ergy photons (i.e., acting as a high pass filter in the
spectrum shown in Fig. 3 (b)). Consequently, this
approach decreases the effect of beam hardening in
the sample, sometimes almost completely [81].

The second point when using absorption as the
imaging mechanism is the conceptual question: do
we have enough contrast to observe the inner struc-
ture of the sample? The attenuation of X-rays de-
pends on both the number density ρ and order num-
ber z of the atoms in the beam path. Consequen-
tially, the answer depends on details of the sample.

If we are interested in a sample of particles with
air in the interstitial voids, the difference in ρ will
typically provide enough contrast to segment the
tomography into a particle and a void phase. If
we want to identify the individual grains forming
the connected particle phase, we need some sub-
sequent image processing. If the particles under
consideration are spheres, this separation step is
simple because the contact points between individ-
ual particles are only a small subset of the overall
surface of the particles and therefore easy to iden-
tify and remove [54]. If the particles are polyhe-
dra with the possibility of having extended face-to-
face contacts, it becomes harder to separate indi-
vidual particles [85,86]. Last but not least, for the
case of irregular, real world granular media such
as dry sand, more complex segmentation strategies
are needed [87,88].

If the sample is composed of two or more dif-
ferent materials, the ability to distinguish them
depends much on their chemical composition, re-
spectively their average Z. It can become partic-
ularly challenging if different material components
share a similar attenuation coefficient, such as the
plant roots in soil shown in Fig. 3 a). Segmenta-
tion of these requires either human interaction [89]
or highly customized algorithms incorporating do-
main knowledge [62,90].

140015-7



Papers in Physics, vol. 14, art. 140015 (2022) / Schröter et al.

If one of the two materials is a liquid, doping
can be a helpful strategy. Studying liquid bridges
between plastic spheres is difficult due to the small
contrast. However, by using bromodecane, or water
with a high concentration of CsCl or KJ dissolved
in it, we can generate 3D images where all three
phases (plastic spheres, liquid bridges and intersti-
tial air) correspond to well separated gray value
ranges [91]. Responsible for this effect are here the
high Z components bromine, cesium, or iodine. A
similar idea can be used to study the orientation of
spherical particles: covering some part of the sur-
face with a gold or silver layer helps to measure
the orientation of individual particles. Such a layer
can either be deposited chemically, or by sputter-
ing [92].
In addition to identifying particle positions and

orientations, resolving the interparticle forces in 3D
would be extremely helpful in diverse applications.
Doing this with conventional X-ray tomography is
difficult because the deformation of most particles
is typically too small to get reliable estimates for
the forces creating them. RIMS studies of soft hy-
drogel spheres seem a more promising venue [93].
More recently, the technique combining tomogra-
phy and measurements of the strain tensor of single
crystal spheres using diffraction also emerges as an
important alternative [94,95].

ii Time-resolved particle tracking for fast
dynamics

Particle tracking is a powerful tool to explore gran-
ular dynamics, owing to the capability of continu-
ous tracking in 3D at relatively high temporal res-
olutions. To ensure sufficient signal-to-noise ratio
(SNR), signals emitted or scattered from the tracer
particles need to be sufficiently strong to enable
tracking. To enhance temporal resolution, continu-
ous operation of the system are typically preferred
in comparison to scanning techniques. In practice,
multiple detectors are needed to locate tracer par-
ticles in 3D.
Taking radar particle tracking [51] as an example

(see Fig. 4(a)), it uses the phase shift of EM waves
travelling from transmission antennae (Tx-Ant) via
tracers to various receiving antennae (Rx-Ant) to
identify the relative distance changes of individual
targets. Based on the phase shifts, 3D trajectories
of the tracers can be constructed through triangu-

lation. The phase shift is extracted using a device
called IQ-Mixer, the output of which, plotting in
the I − Q plane, gives rise to the phase angle θ.
For more information on radar systems in general
or radar particle tracking, interested readers may
refer to the existing literature [51,61,96].

FMCW (frequency modulated continuous wave)
radar is another typically used radar tracking
mode. It has the advantage of obtaining both
position and velocity of multiple objects through
sweeping frequency within the pre-set bandwidth.
Two linear frequency chirps, one with a sawtooth
form (Fig. 4(b)) and the other one with a trian-
gular form (Fig. 4(c)), are used as emitted signals.
Once a chirp signal is chosen, the frequency shift
∆f between transmission (blue curve) and receiv-
ing (dashed gray curve) signals maps directly to the
time delay ∆t in between, and consequently the dis-
tance between the radar chip and the target. If the
target moves, doppler effect leads to detectable fre-
quency shift ∆fd added in addition to ∆f . There-
fore, a separation of the two contributions leads to
both range and velocity information.

More specifically, as shown in Fig. 4(c), a tri-
angular shaped chirp is used. Assuming that the
velocity of the tracer does not change dramatically
during the sweeping period, we consider constant
∆fd induced by the doppler effect. The sketch tells
us that range information can be obtained from
∆f = (∆fr + ∆ff)/2 and the velocity informa-
tion can be extracted from ∆fd = |∆fr − ∆ff |/2.
Note that Fig. 4(b) and (c) only illustrate the algo-
rithm behind FMCW. In reality, accurately deter-
mining the position and velocity of multiple trac-
ers requires further signal processing, particularly
for the case of tracking multiple targets moving at
varying speed. With the latest development of on-
chip radar technologies, radar systems are becom-
ing more readily available and compact, as the pic-
ture in Fig. 4(a) shows [97].

Challenges associated with this technique in-
clude:

1. How to select tracer and surrounding parti-
cles for a better SNR? Similar to other imag-
ing techniques, the tracer particles should have
sufficient contrast with respect to the sur-
rounding particles. For the case of EM waves
in radar tracking, the dielectric constant of the
tracer materials has to be carefully selected
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Generator Tx-Amp.
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Figure 4: (a) A schematic diagram showing the working principle of a multi-static (i.e., transmission and receiving
antennae are located differently) radar system. It is adapted from a previous work [51] to better present the
on-chip radar system (see the picture on the lower right part). The corner reflector shown in the picture is used
for calibration. (b) and (c) represent two scenarios for radar tracking in FMCW mode. Blue curves corresponding
to the sweeping signal emitted at the transmission antennae, the dashed curves correspond to the received signal
from static tracers, and the red curve in (c) represents the received signal in the presence of doppler shift induced
by moving targets.

for the tracers to be distinguished from their
neighbors. Note that sometimes coating a thin
layer of conductive materials can enhance the
contrast to a satisfactory level.

2. How to ensure that tracer particles are rep-
resentative? Tracers typically have different
properties than surrounding particles. This
difference is likely to generate segregation [98,
99]. To ensure mixing, it is important to try
to match the density and size of tracers in the
host material. To tackle this challenge, the
aforementioned coating techniques can also be
used, if the coated layer is sufficiently thin to
avoid detectable change of particle size and

density. However, we note that coating is not
always a feasible solution, thus how the tra-
jectories of tracer particles represent granular
dynamics in the bulk is still a topic for further
investigation.

3. How to properly calibrate the system for accu-
rate tracing? Given a certain initial condition,
such as sensor locations and sensitivities, the
calibration process yields a set of system de-
pendent parameters for reconstructing the 3D
trajectories. These parameters play a key role
in determining the accuracy and reproducibil-
ity of particle tracking, thus a well defined pro-
tocol is needed for the calibration process.
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4. How to properly choose the working distance
and the field of view? The distance change be-
tween tracers and the detectors leads to fluctu-
ations of the received signal amplitudes, which
in turn lead to IQ mismatch and consequent er-
ror in detecting the phase shift between trans-
mission and receiving signals [61]. Note that
radar systems often use phase signals to ob-
tain relative distance change. The phase sig-
nals are represented by the I (imaginary) and
Q (real) signals obtained by an IQ mixer (see
Fig. 4 for a sketch of a radar system). Because
any distortion of the IQ signals will introduce
uncertainty to the phase signals detected, an
appropriate correction of IQ mismatch is es-
sential for radar particle tracking.

5. How to track multiple particles spontaneously
at a reasonable sampling rate? Radar can work
in various tracking modes through tuning the
form of emitted EM waves. Continuous wave
radar [51, 61] has the advantage of tracking
particles with high temporal resolution, while
FMCW radar is capable of tracking multiple
tracers at the same time. In the latter case,
it is necessary to choose sweeping time such
that it balances temporal and spatial resolu-
tions. On the one hand, utilizing faster sweeps
enhances sampling frequency. On the other
hand, steeper slope arising from faster sweeps
leads to higher uncertainty in determining the
distance, thus one always needs to find the bal-
ance between temporal resolution and tracking
capacity (i.e., number of particles to be traced
at the same time).

Fig. 5 shows one application using radar particle
tracking. A metallic sphere is used as the tracer
to measure the drag force exerted by the surround-
ing particles. Due to the opacity of the sample,
it is necessary to have a non-invasive 3D tracking
approach to explore what happens within the gran-
ular sample. A continuous wave radar system [17]
was used to fulfill the task. Although moving target
indicator (MTI) radar is typically used in scenarios
at large length scales (e.g., assist aircraft landing
or taking-off), it is possible downsize it to the lab-
oratory scale to trace centimeter or even smaller
sized particles [51]. In this specific case, the above
challenges can be resolved by means of (i) select-
ing tracer and surrounding particles such that they
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Figure 5: (a) The trajectory of a spherical metallic
tracer impacting onto opaque Styrofoam particles (see
upper right inset for a snapshot of the sample) obtained
with a radar setup (see lower left inset for a schematic
of the setup) together with the result from numerical
simulations. Gray shaded region corresponds to the
uncertainty of the trajectory based on multiple runs of
experiments. (b) Projectile (red) impact on a granular
material composed of spherical particles (silver). Data
extracted from the DEM simulation of a corresponding
experiment [17].

have very different dielectric constants to ensure
good SNR. More specifically, porous particles can
be used to ensure good penetration of EM waves.
(ii) Calibration is performed with tracers moving in
a well defined circular trajectory. Typically, mul-
tiple runs of the calibration process are needed to
ensure an accurate determination of calibration pa-
rameters such as the positions and orientations of
individual antennae. In addition, polarization of
the antennae should be adjusted during the cali-
bration process. (iii) Depending on specific applica-
tions, we may choose continuous wave (CW) radar
for extremely fast dynamics, or switch to FMCW
mode for tracking multiple particles.

In both SNR enhancement and IQ mismatch cor-
rection, how to effectively and robustly smooth raw
data collected at different sampling rates and un-
certainty levels requires substantial care. Given the
fact that the trajectories of tracers are unknown,
fitting the raw data with pre-defined trajectories
and parameter settings won’t help in extracting
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relevant information. Thus, non-parametric algo-
rithms such as moving average filtering, smoothing
splines or local regression are feasible approaches.
In particular, Gaussian Process Regression (GPR)
has emerged as a suitable method with the abil-
ity to handle data with complicated patterns. As a
machine learning (ML) algorithm, it trains a model
with the collected data for prediction [100]. The ad-
vantage is that it does not rely on a pre-defined an-
alytic expression, but on the Gaussian distribution
of ordinate values at different abscissa data points.
Nevertheless, one needs to carefully evaluate com-
putational cost spent in training the model while
implementing GPR. Previous investigations [100]
show that GPR has a space complexity of N3

i and
time complexity of N2

i with Ni the number of data
points. For the example described above, N may
easily reach 105, therefore an appropriate choice
of the kernel function and sampling rate for data
smoothing to balance efficiency and accuracy is nec-
essary.
For the projectile impacting example described

above, an accurate determination of the tracer tra-
jectory does not necessarily mean that we are ready
to explore the collective dynamics of surrounding
particles. In this regard, synergy with numeri-
cal simulations becomes essential. As shown in
Fig. 5(a), direct simulations of the experimental
condition provide an opportunity to explore the dy-
namics of all relevant particles during impact. On
the one hand, experimental data can be used to
calibrate DEM simulations (see, e.g., Fig. 5(b)).
On the other hand, DEM simulations provide in-
dispensable insight into the experimental results,
with great detail. A calibrated numerical model
enables further analysis of mechanical response of
the system from a ‘microscopic’ perspective.
Although radar tracking is relatively new in the

family of ‘imaging’ particles, it has the poten-
tial to develop as a compact, cost-effective, en-
ergy efficient, and accurate particle tracking ap-
proach because of recent advances in radar-on-chip
(RoC) technologies. Nowadays, RoC has become
widely used in applications such as autonomous
driving and gesture recognition [97]. Modern on-
chip radar effectively embeds transmission anten-
nae (Tx-Ant.), receiving antennae (Rx-Ant), os-
cillators, amplifiers and other components into a
single micro-chip with surface area smaller than
7×7mm2. Together with micro-controller and other

peripheral components, it it possible to embed the
whole system into a hand-held device, as Fig. 4(a)
shows. Depending on the bandwidth it operates,
commercial models of on-chip radar are capable
of measuring a centimeter sized tracer at a spa-
tial resolution of centimeter scale within a range of
10 ∼ 20 meters. The working distance arises from
the damping of EM waves in the sample as well
as from the capability for the target to scatter EM
waves (characterized by radar cross-section), as in-
dicated by the Radar equation [96]. As such, the
minimal size of the target and working range of the
radar depend on the power, operation wavelength
and cross-section of the tracer, as well as the sur-
rounding environment. For on-chip radar with lim-
ited power consumption, further considerations are
needed to implement it in particle tracking. The
wavelength of commercially available on-chip radar
systems is on the order of millimeters, thus it the-
oretically possible to track particles of millimeter
size or even smaller. Note that in a previous inves-
tigation [51], tracking a tracer of 5mm in diameter
using EM wave of wavelength 3 cm was achieved.

iii ‘Smart’ particles

Apart from the methodologies described above,
‘smart’ particles with embedded sensors (see
Fig. 2(c)) have arisen as an alternative for probing
the interior of a granular sample. Along with the
development of MEMS (micro-electromechanical
systems) technologies, sensors such as IMU (iner-
tial measurement units) capable of measuring an-
gular velocity, acceleration, magnetic fields, and
other properties can be encapsulated in a microchip
with a typical size of a few millimeters for conve-
nient integration into the peripheral circuit with
a micro-controller. Since the pioneer use of ac-
celerometers in tracing projectile motion inside a
granular medium [101], there have been substan-
tial progresses in developing more robust and accu-
rate tracking algorithms for the detection of tracer
position and velocity in both translation and ro-
tational degrees of freedoms by means of sensor
fusion (see, e.g., [102]). As IMU sensors become
more and more widely used in consumer products,
they become more compact, easier for system in-
tegration and data transmission, and more read-
ily available. This progress sheds light on further
development of ‘smart’ tracers for comprehensive
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tasks with broader applications in industries (see
e.g., [103]). This technique is particularly useful
in conditions where conventional 3D imaging tech-
niques cannot be easily implemented, e.g., in mi-
crogravity experiments or in exploring inaccessible
regions where space, power, and safety limitations
arise. In those scenarios, the possibility of hav-
ing ‘smart’ particles capable of ‘tracing’ themselves
and their surroundings, as well as sending data via
wireless communications extends our ability to ‘see’
through particulate materials.

In practice, there are three main challenges in
accurately determining the position of the ‘smart’
tracers:

1. Coordinate transformation: Raw data col-
lected from IMU sensors include angular veloc-
ities and accelerations measured in sensor co-
ordinate. Step-by-step coordinate transforma-
tion into a fixed laboratory frame is necessary
as the moving target may rotate while trav-
eling. For a successful reconstruction, accu-
rate synchronization of accelerometer and gy-
roscope during the sampling process, removing
drifting of the sensor output, as well as an ap-
propriate selection of sampling rate need to be
carefully considered [102].

2. Cumulative error: After obtaining acceleration
in a fixed coordination system, integration is
needed to obtain velocity and position of the
tracer. During this process, error arising from
background noise, drift of the raw signal, as
well as uncertainty from coordinate transfor-
mation, will accumulate. It is recommended
to use techniques such as a combination of for-
ward and backward integration to reduce ac-
cumulated error [102].

3. Calibration: While talking about particle
tracking, we typically consider measuring ge-
ometrical center or center of mass. In either
case, the goal is to obtain the trajectory of
a fixed point of the tracer particle. Never-
theless, the embedded sensors are not nec-
essarily at the desirable location and differ-
ent sensors might be located at different lo-
cations. Consequently, the acceleration mea-
sured might include, e.g., centrifugal accelera-
tion components. Thus, calibration for sensor

position is needed for an accurate reconstruc-
tion of the tracer trajectory.

For more specific challenges associated with in-
dividual steps described above, interested readers
may refer to a recent article [102]. In the future,
the development of sensing technology allows more
information, such as local humidity and tempera-
ture, force applied on the surface, magnetic field, to
be collected as ‘smart’ particles going through the
sample. It is possible to design ‘smart’ rotors that
can effectively explore the sample by themselves ac-
tively, in addition to the swarmed tracers described
above [103]. Moreover, ‘smart’ tracer network with
communications and data sharing among them pro-
vides the opportunity for the implementation of
data analytical approaches to enhance the ‘smart-
ness’ of the sensing network. In short, if power
consumption of the sensing units is further reduced,
this technology has a great potential to develop it-
self into a powerful tool to explore particulate ma-
terials from an ‘insider’ perspective.

IV Outlook: Potential solutions of
standing challenges

To summarize, there has been substantial progress
in the development of numerical and experimental
techniques to decipher particulate materials from
both local and global perspectives. Throughout
the process, a frequently raised question is how
the two approaches can better support each other.
On the one hand, as described in subsection IIIii,
numerical simulations are capable of providing all
the details of a sample. This is an important ex-
tension to current experimental approaches to ‘see’
through particulate materials. On the other hand,
we need to ensure the model and relevant param-
eters are properly chosen to match experimental
conditions to empower the conclusions drawn from
numerical simulations in widespread applications.
As such, techniques for ‘seeing’ through particulate
materials become essential in developing models for
numerical simulations and in determining relevant
parameters for specific scenarios, such as pattern
formation [104–106], gravity driven flow, mixing
and segregation [98, 105, 107], and other applica-
tions [73,108–110].

In the future, we anticipate more synergy be-
tween 3D imaging techniques and computer sim-
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ulations at the level of individual particles. In ad-
dition to the radar particle tracking example de-
scribed above [17], recent investigations also show
that micro-CT data can be used to calibrate DEM
simulations [111, 112]. Along with the emerging
new techniques to ‘visualize’ local contact forces,
we will be better positioned to develop numerical
tools for better prediction of the collective behavior
of particulate materials.

We also see great potential in applying machine
learning (ML) algorithms, especially deep neural
networks, in the acquisition of 3D images. The rea-
sons for this optimism are twofold: (i) The large
data sets associated with 3D imaging become a
boon as they can be used to train better, more
complex models. (ii) While granular dynamics is
hard to describe at a continuum level, we know
that there are underlying generative models such
as the Newtonian dynamics of the individual grains
or the condition of non-overlap between particles.
While it is hard to write those down explicitly for
even a medium sized sample of grains, neural net-
works excel in finding and utilizing such generative
models (in an implicit manner though). See, for
instance, recent examples of the successful applica-
tion of ML to 3D image acquisition particle detec-
tion algorithm in granular gases using imaging [113]
and positron emission particle tracking [114].

Further on, some ML algorithm can directly im-
prove the raw images taken by, for example, de-
creasing the noise level [115] or correcting beam
hardening artifacts in X-ray images [116]. More-
over, the presently arriving generation of energy
resolving X-ray detectors [117] should, in combina-
tion with suitable ML algorithms, be able to miti-
gate the effect of beam hardening.

Another approach could be having a neural net-
work learn the packing geometry distribution and
then use this knowledge to use less than 10% of
the raw images to create a 3D reconstruction [118],
which paves the way for speeding up data acqui-
sition in scanning techniques. Last but not least,
ML algorithm also finds applications in raw data
processing (e.g., IQ correction of raw data from
Radar tracing). More advanced and efficient ML
algorithms will be of great interest in the future de-
velopment of imaging techniques discussed above.
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[57] D S Bassett, E T Owens, K E Daniels,
M A Porter, Influence of network topology
on sound propagation in granular materials,
Phys. Rev. E 86, 041306, (2012).

[58] J S Lin, M M Chen, B T Chao, A novel
radioactive particle tracking facility for mea-
surement of solids motion in gas fluidized
beds, AIChE Journal 31, 473, (1985).

[59] J Neuwirth, S Antonyuk, S Heinrich, M Ja-
cob, CFD–DEM study and direct measure-
ment of the granular flow in a rotor granu-
lator, Chemical Engineering Science 86, 163,
(2013).

[60] X Tao, H Wu, The translational and rota-
tional motions of a cylindrical particle in a
granular shear flow inside a split bottom Cou-
ette cell, Physics of Fluids 32, 073310, (2020).

[61] F Rech, K Huang, Radar for projectile impact
on granular media, International Journal of
Microwave and Wireless Technologies 12, 7,
(2020).

[62] S Gerth, J Claußen, et al., Semiautomated 3D
Root Segmentation and Evaluation Based on
X-Ray CT Imagery, Plant Phenomics 2021,
(2021).

[63] M Baur, N Uhlmann, T Pöschel, M Schröter,
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