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Detection and classification of rainfall in South America using satellite
images and machine learning techniques

F Andelsman1∗, S Masuelli1, F Tamarit1,2

The study of precipitation is one of the most intriguing areas in atmospheric sciences,
with significant implications for our daily lives and climate change projections. This paper
explores the estimation of rainfall trends in South American regions using convolutional
neural networks (CNNs). The study focuses on the application of Cloud-Net, a CNN-
based model with a format similar to an autoencoder, to obtain qualitative estimates of
precipitation patterns. The employed loss functions, Categorical Cross Entropy and Cate-
gorical Focal Loss, address the challenges of classifying minority categories in unbalanced
data. Regional analysis was conducted, identifying days with high rainfall intensity and
the predominant intensities in 25 regions. The CNN model’s performance was compared
with the XGBoost algorithm, showing excellent results for extreme rainfall categories and
challenging intermediate categories. Furthermore, a comparison was made with Quanti-
tative Precipitation Estimation (QPE) data and ground measurements from rain gauges.
While the CNN model provided a valuable qualitative estimate of precipitation trends,
achieving precise quantitative estimation would require an extensive data set of in-situ
measurements. Overall, this research demonstrates the potential of CNNs for estimating
rainfall trends and understanding precipitation patterns in South American regions. The
findings offer valuable insights for further applications in meteorology and environmental
studies.

I Introduction

The variability of precipitations in different spa-
tiotemporal scales affect both our life and climate
itself. The estimation of precipitations on Earth’s
surface is crucial from scientific (e.g. the improve-
ment of hydrological models), social (e.g. tracking
waterborne diseases) and economic (e.g. projec-
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tions of crop production) perspectives. In recent
years, there has been a significant rise in the appli-
cation of machine learning methods, particularly
neural networks, as powerful techniques to extract
meaningful features from climate phenomena[1].

Satellites have revolutionized precipitation esti-
mation on a global scale in the last decades. Their
diverse array of sensors empower us to regularly ob-
serve Earth and its atmosphere using a wide range
of wavelengths, including visible (VIS), infrared
(IR), and microwave (MW). By detecting various
spectral bands of electromagnetic radiation, these
sensors provide invaluable data for scientific analy-
sis. Utilizing this information, scientists can char-
acterize precipitation patterns and develop special-
ized algorithms for various applications[1].
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Precipitation is a complex phenomenon in which
many local parameters, such as sea level, season,
surface temperature, among others, influence its
dynamics. These features are hidden for satellite
observation in the range VIS to IR, which provide
information solely about the top of the clouds that
generate the rain. However, these measurements
are available from geostationary orbits, enabling
quasi-continuous monitoring of a significant portion
of Earth with high update speed. This allows for
adequate temporal sampling, essential for observ-
ing the short-lived and high temporal variability of
rain events. MW measurements are more directly
sensitive to precipitation; however, currently, they
are only available from satellites in low orbits[2].
Image classification is understood as the pro-

cess of making quantitative decisions using data
extracted from images, by grouping their pixels or
regions into classes representing different physical
objects. This general definition of classification is
based on a statistical and probabilistic analysis of
the information, which can be performed by both
humans and algorithms[3, 4].
Machine learning can be defined as the utilization

of data and algorithms to mimic the way humans
learn, gradually improving its accuracy through
practice. One potential approach is supervised
learning, where a training set of data with known
class labels is provided, and from this dataset, the
algorithm can generalize what it has learned when
presented with new information.
In this study, the focus lies on the challeng-

ing task of image segmentation, aiming to produce
thematic maps that provide a spatial description
of specific characteristics (e.g., rain) in a desig-
nated area on Earth[5]. Neural networks are among
the models employed to accomplish this task, con-
tributing to the creation of these informative maps.
Our study is centered around analyzing the

Quantitative Precipitation Estimation (QPE)[6]
from the Geostationary Operational Environ-
mental Satellite 16 (GOES-16), a self-calibrated
level 2 standard product developed by the Na-
tional Oceanic and Atmospheric Administration
(NOAA). The algorithm utilizes IR data from
GOES and calibrates its features to determine rain-
fall rates by incorporating microwave external in-
formation from specific polar satellites like Wind-
Sat. This process enables the algorithm to generate
estimates of the instantaneous rainfall rate (mea-

sured in mm/h) at a 2 km scale for each pixel, with
updates occurring every 10 minutes. The study
area encompasses the latitudes 17° S to 39° S and
longitudes 49° W to 73° W, including the countries
of Uruguay, Paraguay, and portions of Argentina,
Brazil, Chile, and Bolivia. Our research focuses
only on the first 16 days of January 2021.

This work was divided into two main stages. In
the first stage, our focus was on gaining a deeper
understanding of the Quantitative Precipitation
Estimation (QPE) itself. We conducted an analysis
of temporal and regional patterns using frequency
graphs, visually verified the formation of rainfall
intensity clusters, obtained brightness temperature
distributions for each spectral band utilized, and
compared the results with existing Red, Green and
Blue (RGB) products.

During the second stage, the study involved the
processing of satellite images through pixel super-
vised classification, addressing the segmentation
problem. We considered the statistical character-
istics of the data, treating each spectral band as a
distinct physical dimension. By doing so, we ob-
tained probability maps for each category or class.
Some models treated each pixel as an independent
sample, like XGBoost[7], while others, such as con-
volutional networks, considered the neighborhood
of each pixel as well. In this context, the Cloud-
Net model[8], initially designed for cloud pixel de-
tection, was adapted for this research to effectively
detect rainfall pixels or classify them based on their
respective rainfall intensity.

This work draws inspiration from the growing
number of studies that combine machine learning
methods with satellite[9, 10], radar[11, 12], or hy-
brid information[13]. Its primary objective is to
demonstrate the effectiveness of the Cloud-Net net-
work, using only GOES spectral bands as input
data, in reproducing the rainfall results obtained
by the QPE algorithm. The ultimate goal is to
create a simpler hydro-estimator. Additionally, the
classification results were compared across differ-
ent quantities of rainfall intensity categories (2, 3,
or 6), using various loss functions and the XGBoost
algorithm. This paper will present only the results
obtained with 6 categories, but further information
and datasets are available upon request.
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Figure 1: Cloud-Net Architecture

II Methodology

i Cloud-Net Architecture

As we mentioned in the previous section, in this
work, we will use convolutional neural networks
with a format similar to an autoencoder, in which
the input and output spaces share the same struc-
ture. We will employ an architecture called Cloud-
Net, developed specifically for cloud classification.
This neural network has shown outstanding results,
surpassing the most commonly used methods to
tackle this type of problem[8]. Its previous achieve-
ments support its ability to provide a promising and
effective approach in our research.

Cloud-Net, like any CNN, has two branches, or
arms. The first branch is called the “contracting
arm”. It is responsible for extracting and producing
low-level features of the input image, such as lines,
dots, and edges. The second branch is called the
“expansion arm”. It uses the previously generated
features to recover spatial and global features of the
image. The architecture of Cloud-Net is shown in
Fig. 1. The blue bars and blocks form the contract-
ing arm, while the green arrows and blocks build
the expansion arm. The network is implemented
using the Keras library.

The main distinction from the original Cloud-Net
article in our work is our interest in multi-category
classification based on rainfall intensity. Conse-
quently, our final output consists of N probabil-
ity maps, each sharing the same size as the input
image, where N is the number of proposed cate-
gories/classes.

ii Loss Functions

Neural networks require not only a specific architec-
ture to learn how to solve a problem but also a way
to measure how far their predictions are from the
actual target, in order to minimize the final loss or
error and achieve better results. For binary classifi-
cation, two loss functions were used: Dice Loss and
Tversky Loss[14–17]. These loss functions differ in
how they penalize errors when classifying classes.
In the case of multi-category classification, the fol-
lowing loss functions were employed:

a Categorical Cross Entropy Loss

Entropy is a measure of the uncertainty associated
with a distribution p(y) that has K different states.
It helps us evaluate how well our model’s predic-
tions match the true labels in multi-classification
tasks. Categorical Cross Entropy is defined as:

L(θ) = − 1

n

n∑
i=1

K∑
j=1

[yij log(pij)] (1)

In this context, i represents each of the samples,
j indexes the categories, yij is the label previously
assigned to each sample, and pij is the probability
of pixel i belonging to category j.

Cross Entropy Loss is a commonly used loss func-
tion in multi-category image segmentation. How-
ever, it can have trouble when dealing with unbal-
anced data. In cases where there are many images
dominated by a single category, the model may be-
come biased towards learning from the“easy” ex-
amples, leading to suboptimal results when faced
with more complex examples.

In summary, while Cross Entropy is widely used,
it is crucial to address the impact of data imbalance
to achieve better segmentation results, especially in
situations of unbalanced data sets.

b Categorical Focal Loss

Categorical Focal puts special emphasis on the
model’s incorrect predictions to encourage improve-
ment in handling complex examples over time. This
can help overcome biases that may be present with
Cross Entropy Loss. The key technique used for
this is called Down Weighting, which adds a mod-
ulating factor to the Cross Entropy Loss Eq. 1:
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Figure 2: The chosen area and the 25 regions of
study

L(θ) = − 1

n

n∑
i=1

K∑
j=1

[yij log(pij)α(1− pij)
γ ] (2)

In Categorical Focal Loss, we use a parameter γ ≥ 0
which is known as the focus parameter. This pa-
rameter reduces the impact of easy examples in the
loss value, giving more attention to challenging ex-
amples. Additionally, we have another parameter,
α, which is called the balance parameter. For this
specific work, the values α = 0.25 and γ = 2 were
chosen, based on the consulted bibliography[18].

iii Study Area and Time Period

To focus on a specific area of South America, this
study was carried out within the latitudes 17° S to
39° S and longitudes 49° W to 73° W. This area
includes the countries of Uruguay, Paraguay and
parts of Argentina, Brazil, Chile and Bolivia. The
entire chosen area was then subdivided in 25 re-
gions of 192x192 pixels for easier insertion in the
Cloud-Net model. The map displayed in Fig. 2 is
based on Google Earth, and each marker on the
map represents the corners of these square regions,
as seen from a geostationary projection point of
view. The models were trained using data from

the first 15 days of January 2021. Then, on Jan-
uary 16, the trained models were tested.

iv Input and Label Data sets

Throughout this paper, the input bands used for
training in our models are the same channels as
those utilized to obtain the QPE product from
GOES-16:

1. Band 8 (6.2 µm): upper water vapor channel.

2. Band 10 (7.3 µm): lower water vapor channel.

3. Band 11 (8.5 µm): cloud phase channel.

4. Band 14 (11.2 µm): longwave window channel.

5. Band 15 (12.3 µm): “dirty” longwave IR win-
dow channel.

As mentioned in the Introduction, the QPE
product provides an instantaneous rain rate in
mm/h (ranging from 0 to 100 mm/h) every 10 min-
utes. This means there are 144 images available
per day, corresponding to the Coordinated Univer-
sal Time (UTC). For this research, the focus was on
binary and multi-category classification tasks. To
achieve this, rainfall intensity classes needed to be
defined for the label data. For rain detection (bi-
nary classification), a threshold of 0.1 mm/h was
chosen to differentiate ”rain pixels” from ”No Rain
pixels”. Additionally, 6 classes were defined based
on existing bibliography [19], see Table 1.

In order to avoid high class imbalance between
the “No Rain” category and the other 5 rainfall
classes during training, an image selection process
was established. In the case of the multi-category
classification, a minimum of 1000 pixels of both
“Intense” and “Torrential” classes was required for
each image to be used during training. This re-
sulted in the availability of 1326 images (a total
of 48.881.664 pixels). The decision was based on
the focus of this study to prioritize the replication
of heavy summer rainfall through machine learning
models. Then, a total of 3500 images from January
16 were used for testing.
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Figure 3: Difference between number of rainfall
classes, 01/01/2021. Notice the significant

difference in scale between the “No Rain” pixels
and the other classes, which explains the existing

graph break.

III Results

i QPE Hourly Analysis

The first results involved studying the variation in
total rainfall throughout each day for the entire
study area. We could observe the hours with the
highest and lowest rainfall, as well as the domi-
nance of certain rainfall intensity classes compared
to others when considering the 6 final intensity
classes.
As an example, Fig. 3 shows the hourly variation

of the number of pixels for each of the 6 rainfall in-
tensities on January 1st, 2021. The figure reveals
a noticeable difference between the number of “No
Rain” pixels and the rest of the classes. This ob-
servation confirms the class imbalance mentioned

Figure 4: (top) Daily total count of pixels for
both binary classification and (bottom) rainfall
classes in region 6 (along the Pacific coast of the

Atacama desert).

in the previous sections. Notably, there is an ap-
parent “valley” behaviour, with little to no rain
between images number 50 and 80 (around noon
in Argentina), followed by a gradual increase in
rain pixels during the afternoon, and peaks of total
rain at the beginning of the day (around 3 ART-
Argentina Time) and between images 120 and 140
(around midnight)[20,21].

ii QPE Regional Analysis

In this subsection, we examine the pattern of pre-
cipitation in different regions. We divided the study
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Figure 5: (top) Daily total count of pixels for
both binary classification and (bottom) rainfall

classes in region 5 (Mato Grosso, Brazil).

area into the 25 regions, as shown in Fig. 2. For
each region, we identified the days with the highest
amount of rainfall and analyzed the intensities that
contribute the most on those days.

Next we take a look at three specific regions as
examples. The first region in number 6 (Fig. 4), lo-
cated in the Pacific Ocean just next to the Atacama
Desert, is known for its low rainfall. However, it
can also experience sudden heavy rainfall[22]. The
second region is number 5 (Fig. 5), in the Brazil-
ian Mato Grosso, where we observed rainfall of all
intensities, including a day with a predominance of
rainfall exceeding 30 mm/h (categorized as “tor-
rential” rain in our classification). The third re-

Figure 6: (top) Daily total count of pixels for
both binary classification and (bottom) rainfall
classes in region 18 (central part of Argentina).

gion is number 18 (Fig. 6), covering parts of the
provinces of Córdoba, Santiago del Estero, Santa
Fé, and Catamarca in Argentina. In this region,
we noticed alternating days with scarce rainfall and
days with more significant precipitation in interme-
diate categories.

iii Visual Comparison with Day Micro-
physics

In many cases, it can be beneficial to use images
from multiple channels to enhance the visualization
of specific phenomena. This is achieved through
RGB composition. Each pixel in the image is rep-
resented by a triplet of integer values between 0 and
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Figure 7: (top) Day Microphysics RGB.
(bottom) QPE product at 17:10 UTC, 16/01,

region 13. All map figures include north, scale and
only the coordinates of the corner points.

255, defining its color. By experimenting with dif-
ferent combinations of bands or altering their order,
the colors of the final image change. These varia-
tions enable the detection of objects and features
that might not be visible using a single band.

To identify spatial features related to the QPE
product, Fig. 7 displays a derivative of the Day
Microphysics product (R = Band 3, G = Band 7,
B = Band 13) in Fig. 7.a, alongside the corre-
sponding QPE product in Fig. 7.b. Notably, the
rain zones (represented by light tones in Fig. 7.b)
mainly aligned with the areas of clouds containing
large or small ice particles (appearing as reddish
and brownish tones in Fig. 7.a).

Figure 8: Cloud-Net training with 6 categories.
(top) Cross Entropy vs Epochs. (bottom) Focal

Loss vs Epochs

iv Cloud-Net and XGBoost: 6 classes

Next, the QPE results were replicated using the
machine learning methods described in the Intro-
duction. The input data comprised bands 8, 10,
11, 14, and 15, which were suitably converted to
brightness temperatures. The classification was
performed using the 6 rainfall categories defined
in Table 1 as label data. The first set of graphs
(Fig. 8) illustrates the training process of the net-
work, showing the evolution of Cross Entropy and
Focal Loss concerning epochs (1 epoch corresponds
to one complete cycle through the entire training
set). There seems to be difficulty in the conver-
gence of the training and validation curves with
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(a) (b) (c)

Figure 9: Confusion matrix for 6 categories with (a) Cloud-Net and Cross Entropy, (b) Cloud-Net and
Focal Loss, (c) XGBoost

Cross Entropy, while the validation curves converge
rapidly with the training curves when using Focal
Loss.

Figure 9 shows the confusion matrices for the 6
rainfall categories using both Cloud-Net and XG-
Boost. Both algorithms face challenges in accu-
rately identifying the intermediate categories, ex-
cept for category 2 when Cloud-Net is trained with
Cross Entropy. However, the results are quite im-
pressive for the extreme categories, ”No Rain” and
”Rain > 30 mm/h”, particularly when Cloud-Net
is trained with Focal Loss and for XGBoost. It
is important to note that XGBoost only considers
the information of individual pixels and does not
take into account the neighborhood information.
Finally, there is a noticeable trend where the al-
gorithms tend to predict category 1 pixels as ”No
Rain” pixels, suggesting a difficulty in establish-

Table 1: 6 rainfall intensity Classes

6 Classes Condition [mm/h]

No Rain (0) QPE < 0.1
Light Rain (1) 0.1 ≤ QPE < 2.5

Moderate Rain (2) 2.5 ≤ QPE < 7.5
Strong Rain (3) 7.5 ≤ QPE < 15
Intense Rain (4) 15 ≤ QPE < 30

Torrential Rain (5) 30 ≤ QPE

ing the first classification threshold. This indicates
that further improvements may be needed to en-
hance the classification performance in the lower
rainfall intensity categories.

In Fig. 10, the predictions for the 6 rainfall cate-
gories at 17:10 UTC in region 13 are shown. Once
again, Cloud-Net demonstrates better performance
in identifying isolated and low-intensity clusters.
Moreover, it shows greater attention to detail in the
main precipitation cluster, particularly in category
4 (regions with lighter green) which closely resem-
bles the QPE label. Despite Focal Loss’s attempt
to penalize mistakes while classifying minority cat-
egories, it doesn’t significantly improve the results
obtained with Cross Entropy in this case. However,
Cloud-Net still outperforms XGBoost in handling
the complex patterns and variations in rainfall in-
tensity.

Table 2: Values according to category

6 Classes Assigned Value [mm/h]

No Rain (0) 0
Light Rain (1) 1.25

Moderate Rain (2) 5
Strong Rain (3) 11.25
Intense Rain (4) 22.5

Torrential Rain (5) 35.5
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(a) (b)

(c) (d)

Figure 10: 17:10 UTC, 16/01/2021, Region 13: (a) QPE label and predictions with (b) Cloud-Net and
Cross Entropy, (c) Cloud-Net and Focal Loss, (d) XGBoost

In Fig. 11, we observe the predictions for 23:30
UTC in region 8, where a considerable number of
“torrential” rain pixels are present. The prediction
made by both Cloud-Net and XGBoost show better
results, and there is a relative similarity between
them. It is evident that all models demonstrate
good performance in predicting the main clusters
with higher precipitation. However, they encounter
difficulty when it comes to the secondary clusters.
These secondary clusters are the main areas where
the models face challenges and make errors, as seen
in the confusion matrix shown in Fig. 9, which
was to be expected due to the selection process
explained in the Input and Label Data sets sub-
section.

v QPE and models comparison with
ground floor information

Before making comparisons, it is essential to con-
sider some factors. Cloud precipitation exhibits
high variability both in time and space, making it
challenging to directly compare instantaneous esti-
mation over an area against in–situ measurements.
Additionally, the rain rate, as a geophysical vari-
able, can have different interpretations depending
on various factors such as latitude, season, or the
specific application, such as agriculture or emer-
gency situations[1]. In the case of QPE, its values
are generally higher when compared to radar es-
timations. For example, Sun et al.[23] reported a
factor of at least two in comparisons for the Conti-
nental U.S. (CONUS) area. Due to these inherent
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(a) (b)

(c) (d)

Figure 11: 23:30 UTC, 16/01/2021, Region 8 with heavy rainfall: (a) QPE label and predictions with
(b) Cloud-Net and Cross Entropy, (c) Cloud-Net and Focal Loss, (d) XGBoost

complexities and differences, our comparisons pri-
marily focus on quantitative aspects rather than
direct quantitative assessments.

During January 16, 2021, we conducted a com-
parison between the QPE algorithm’s results and
the daily accumulated predictions generated by the
Cloud-Net and XGBoost models in a region experi-
encing heavy rainfall. To facilitate this comparison,
we accessed rainfall data from rain gauges provided
by the Chaco police. This data enabled us to ob-
tain figures 12, 13, 14, and 15. As these machine
learning models assign rainfall intensity categories
to each pixel, each pixel had to be reassigned a
value in mm/h depending on its classification. As
the machine learning models assign rainfall inten-
sity categories to each pixel, we needed to reassign
each pixel a value in mm/h based on its classifi-

cation. For the first five categories, we assigned
their mean value. However, for the last category of
“Torrential Rain”, we calculated a weighted aver-
age using the rainfall data from all 16 days in the
nearby regions. This approach allowed us to con-
vert the model’s categorical predictions into mean-
ingful quantitative estimates of rainfall intensity in
millimeters per hour (mm/h), see Table 2.

It is worth noting that despite the differences
between ground-based and satellite-derived values,
there are records of rainfall of the magnitude cal-
culated by the QPE in certain towns of Chaco[24].
For instance, in the town of Miraflores, there were
reports of rainfall reaching up to 105 mm, which
resulted in impassable roads for vehicular traffic,
as documented by the police[25].
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Figure 12: Area with high precipitation. The
colored dots correspond to rain gauge information
and the color map beneath corresponds to the

QPE information. Gauge data was collected at 7
ART, 17/01/2021. The QPE product was

accumulated over a 24–hour period.

Figure 13: The colored dots correspond to rain
gauge information and the color map beneath

corresponds to the accumulated Cloud-Net model
with Cross Entropy over a 24-hour period.

Figure 14: The colored dots correspond to rain
gauge information and the color map beneath

corresponds to the accumulated Cloud-Net model
with Focal Loss over a 24-hour period.

Figure 15: The colored dots correspond to rain
gauge information and the color map beneath

corresponds to the accumulated XGBoost model
over a 24 hour period.
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IV Conclusions

An all-encompassing analysis of the QPE (Quan-
titative Precipitation Estimation) rainfall product
was undertaken, covering a significant portion of
the South American continent for the first half of
January 2021.
Initially, we counted the rainfall pixels hourly

for different intensity categories within the speci-
fied latitudinal and longitudinal ranges. This ex-
amination revealed interesting patterns, including
intervals of rainfall peaks alternating with valleys,
and differences in the presence of “No Rain” and
“Rain” pixels.
Further, we subdivided the territory into 25 re-

gions and identified the days with the highest
amount of rainfall, along with the predominant in-
tensities for each region. This step was essential to
verify whether the QPE product aligned with the
precipitation trends previously documented by re-
searchers in each region. Note that this geographic
segmentation helps to indirectly introduce local in-
formation to the neural network.
Through supervised learning, the convolutional

neural network Cloud-Net was successfully trained
using a preprocessed data set, involving the
transformation of GOES-16 satellite channels into
brightness temperatures and the categorization of
labels based on rainfall intensities. We employed
two loss functions, Cross Entropy and Focal Loss,
during training, and compared the results with
those obtained using the XGBoost algorithm.
To assess the accuracy of the predictions, we ac-

cessed information from rain gauges in the province
of Chaco, Argentina, on January 16, 2021, and
compared it with the accumulated rainfall map ob-
tained from the QPE product, as well as the Cloud-
Net and XGBoost predictions. Notably, the QPE
product tended to overestimate rainfall in certain
regions, particularly in areas with high accumu-
lated rainfall, possibly due to convective activity.
In this study, we show that it is possible to use

a convolutional neuronal model to estimate rainfall
trends in South America regions using the QPE
product. Our results still fail to coincide with in-
situ measurements, but this is due to the strong
discrepancy between the QPE product and surface
data. It is worth noting the enormous difficulty
of using in-situ data for training neural networks
due to the lack of reliable terrestrial data. In fact,

QPE uses only a limited quantity of auxiliary data.
In other words, the search for a machine learning
model able to catch the cloud features would re-
quire a vast amount of data from real-time mea-
surements taken on the ground instead of the QPE
product. Nevertheless, our model provides a useful
qualitative estimate of rainfall patterns in the re-
gion, which can still be valuable for understanding
general trends and patterns.

With Cloud-Net, we achieved very good results
for the extreme categories of “No Rain,” with a 99%
precision for both loss functions, and “Rain > 30
mm/h,” with an 87% precision using Cross Entropy
and a 93% precision using Focal Loss. Additionally,
XGBoost also performed exceptionally well in the
“Rain > 30 mm/h” category, with a 96% precision.

The network faced some challenges in identify-
ing pixels in the intermediate categories. However,
through visualizations and confusion matrices, we
confirmed that most errors occurred between neigh-
boring categories. This indicates that the network
effectively learned the image-level structure of pre-
cipitation, delivering highly accurate predictions
for the main clusters of heavier rainfall while ex-
hibiting lower performance for secondary clusters.
It is noteworthy that predictions performed better
for the event in Region 8, where higher intensities
dominated, compared to Region 13, which had a
prevalence of intermediate intensities. This high-
lights the models’ adaptability and ability to ac-
curately capture distinct precipitation patterns in
different regions.

Data Availability

The data supporting this article will be made
available upon reasonable request. The data sets
used in this study were obtained from publicly
accessible sources. GOES-16 products can be ac-
cessed at the following URL: https://home.chpc.
utah.edu/~u0553130/Brian_Blaylock/cgi-

bin/goes16_download.cgi.
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16 (https://www.noaa.gov/jetstream/goes east), a
geostationary satellite operated by NASA and
NOAA. The architecture of the neural network was
based on the Cloud-Net model (S Mohajerani et
al., 2019, IGARSS 2019, p1029). Processing, train-
ing and data analysis were done using Python soft-
ware.
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