[1] R Clausius, ̈Uber eine ver ̈anderte Form des zweiten Hauptsatzes der mechanischen W ̈armetheorie, Annalen der Physik. xciii(12), 481, (1854).

[2] C E Shannon, A mathematical theory of communication, The Bell system technical journal 27(3), 379, (1948).

[3] S Martiniani, P M Chaikin, D Levine, Quantifying hidden order out of equilibrium, Phys. Rev. X 9, 011031, (2019).

[4] S Martiniani, Y Lemberg, P M Chaikin, et al., Correlation lengths in the language of computable information, Phys. Rev. Lett. 125, 170601, (2020).

[5] R Avinery, M Kornreich, R Beck, Universal and Accessible Entropy Estimation Using a Compression Algorithm, Phys. Rev. Lett. 123, 178102, (2019).

[6] A Cavagna, P M Chaikin, D Levine, et al., Vicsek model by time-interlaced compression: A dynamical computable information density, Phys. Rev. E 103, 062141, (2021).

[7] S Ro, B Guo, A Shih, T V Phan, et al., Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter, Phys. Rev. Lett. 129, 220601, (2022).

[8] D A Wiley, S H Strogatz, M Girvan, The size of a sync basin, Chaos 16(1), 015103, (2006).

[9] S P Cornelius, W L Kath, A E Motter, Realistic control of network dynamics, Nat. Commun. 4(1), 1, (2013).

[10] Y Zhang, S H Strogatz, Basins with tentacles, Phys. Rev. Lett. 127, 194101, (2021).

[11] D Frenkel, A J Ladd, New Monte Carlo mehod to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres, J. Chem. Phys. 81(7), 3188, (1984).

[12] N Xu, D Frenkel, A J Liu, Direct determination of the size of basins of attraction of jammed solids, Phys. Rev. Lett. 106(24), 245502, (2011).

[13] D Asenjo, F Paillusson, D Frenkel, Numerical calculation of granular entropy, Phys. Rev. Lett. 112(9), 098002, (20114).

[14] S Martiniani, K J Schrenk, K Pamola, et al., Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming, Nat. Phys. 13, 848, (2017).

[15] S Martiniani, K J Schrenk, J D Stevenson, et al., Turning intractable counting into sampling: computing the configurational entropy of three-dimensional jammed packings, Phys. Rev. E 93(1), 012906, (2016).

[16] S Martiniani, K J Schrenk, J D Stevenson, et al., Structural analysis of high-dimensional basins of attraction, Phys. Rev. E 93(3), 031301, (2016).

[17] D Frenkel, K J Schrenk, S Martiniani, Monte Carlo sampling for stochastic weight functions, Proc. Nat. Ac. Sci. 114(27), 6924, (2017).

[18] S S Ashwin, J Blawzdziewicz, C S O'Hern, et al., Calculations of the structure of basin volumes for mechanically stable packings, Phys. Rev. E 85, 061307, (2012).

[19] M R Shirts, J D Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys. 129(12), 124105, (2008).

[20] X Ding, J Vilseck, C Brooks, Fast Solver for Large Scale Multistate Bennett Acceptance Ratio Equations, J. Chem. Theory Comput. 2019(15), 802, (2019).

[21] J G Kirkwood, Statistical Mechanics of Fluid Mixtures, J. Chem. Phys. 3, 300, (1935).

[22] A Gelman, X-L Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Statist. Sci. 13(2), 185, (1998).

[23] A Bunker, B D ̈unweg, Parallel excluded volume tempering for polymer melts, Phys. Rev. E 63(1), 016701, (2000).

[24] H Fukunishi, O Watanabe, S Takada, On the hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction, J. Chem. Phys. 116(20), 9058, (2002).

[25] J M Torrie, J P Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23(2), 199, (1977).

[26] A Chevallier, F Cazals, P Fearnhead, Efficient computation of the volume of a polytope in high dimensions using Piecewise Deterministic Markov Processes, ArXiv Preprint, 2202.09129, (2022).

[27] J Skilling, Bayesian Computation in big spaces-nested sampling and Galilean Monte Carlo, AIP Conference Proceedings 1443, 145, (2012).

[28] M Griffiths, D J Wales, Nested Basin Sampling, J. Chem. Theory Comput. 15(12), 6881, (2019).

[29] S F Edwards, R B S Oakeshott, Theory of Powders, Physica A 157(3), 1080, (1989).

[30] A Baule, F Morone, H J Herrmann, et al., Edwards statistical mechanics for jammed granular matter, Rev. Mod. Phys. 90(1), 015006, (2018).

[31] T Aste, Volume fluctuations and geometrical constraints in granular packs, Phys. Rev. Lett. 96(1), 018002, (2006).

[32] T Aste, T Di Matteo Emergence of Gamma distributions in granular materials and packing models, Phys. Rev. E 77(2), 021309, (2008).

[33] S McNamara, P Richard, S K De Richter, et al., R Delannay Measurement of granular entropy, Phys. Rev. E 80(3), 031301, (2009).

[34] J G Puckett, K E Daniels Equilibrating temperature-like variables in jammed granular subsystems, Phys. Rev. Lett. 110(5), 058001, (2013).

[35] S-C Zhao, M Schr ̈oter, Measuring the configurational entropy of a binary disc packing, Soft Matter 10(23), 4208, (2014).

[36] E S Bililign, J E Kollmer, K E Daniels Protocol dependence and state variables in the force-moment ensemble, Phys. Rev. Lett. 122(3), 038001, (2019).

[37] X Sun, W Kob, R Blumenfeld, et al., Friction-controlled entropy stability competition in granular systems, Phys. Rev. Lett. 125(26), 268005, (2020).

[38] Y Yuan, Y Xing, J Zheng, et al., Experimental test of the Edwards volume ensemble for tapped granular packings, Phys. Rev. Lett. 127(1), 018002, (2021).

[39] J D Weeks, D Chandler, H C Andersen, Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Chem. Phys. 54, 5237, (1971).

[40] C P Goodrich, S Dagois-Bohy, B P Tighe, et al., Jamming in finite systems: Stability, anisotropy, fluctuations, and scaling, Phys. Rev. Lett. 112(14), 145502, (2014).

[41] S Atkinson, F Stillinger, S Torquato, Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings, Phys. Rev. E 88(6), 062208, (2013).

[42] G-J Gao, J Blawzdziewicz, C S O'Hern, Frequency distribution of mechanically stable disk packings, Phys. Rev. E 74, 061304, (2006).

[43] M Parrinello, A Rahman, Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Phys. Rev. Lett. 45, 413, (1980).

[44] M Parrinello, A Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. App. Phys. 52, 7182, (1981).

[45] M Parrinello, A Rahman, Strain fluctuations and elastic constants, J. Chem. Phys. 76, 2662, (1982).

[46] R Najafabadi, S Yip, Observation of Finite Temperature Bain Transformation (f.c.c. ↔ b.c.c.) in Monte Carlo Simulation of Iron, Scr. Metall. 17, 1199, (1983).

[47] S Yashonath, C Rao, A monte carlo study of crystal structure transformations, Mol. Phys. 54, 245, (1985).

[48] R J N Baldock, L B P ́artay, A P Bart ́ok, et al., Determining pressure-temperature phase diagrams of materials, Phys. Rev. B 93, 174108, (2016).

[49] R J N Baldock, N Bernstein, K Michael Salerno, et al., Constant-pressure nested sampling with atomistic dynamics, Phys. Rev. E 96, 043311, (2017).

[50] C Anzivino, M Casiulis, T Zhang, et al., Estimating random close packing in polydisperse and bidisperse hard spheres via an equilibrium model of crowding, J. Chem. Phys., In Press (2022).

[51] T Castellani, A Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. 2005, P05012, (2005).

[52] V Ros, G Ben Arous, G Biroli, et al., Complex Energy Landscapes in Spiked-Tensor and Simple Glassy Models: Ruggedness, Arrangements of Local Minima, and Phase Transitions, Phys. Rev. X 9(1), 011003, (2019).

[53] T Rizzo, Path integral approach unveils role of complex energy landscape for activated dynamics of glassy systems, Phys. Rev. B 104, 094203, (2021).

[54] G Folena, A Manacorda, F Zamponi, Introduction to the dynamics of disordered systems: equilibrium and gradient descent, Lectures Notes for the Fundamental Problems in Statistical Physics XV Summer School (2021).

[55] V Ros, G Biroli, C Cammarota, Complexity of energy barriers in mean-field glassy systems, EPL 126, 20003, (2019).

[56] V Ros, G Biroli, C Cammarota, Dynamical Instantons and Activated Processes in Mean-Field Glass Models, SciPost Phys. 10, 002, (2021).

[57] B Lacroix-à-chez-Toine, Y Fyodorov, Counting equilibria in a random non-gradient dynamics with heterogeneous relaxation rates, J. Phys. A: Math. Theor. 55, 144001, (2022).

[58] J Kent-Dobias, J Kurchan, Complex complex landscapes, Phys. Rev. Research 3, 023064, (2021).

[59] E Bitzek, P Koskinen, F G ̈ahler, et al., Structural relaxation made simple, Phys. Rev. Lett. 97(17), 170201, (2006).

[60] F H Stillinger, T A Weber, Hidden structure in liquids, Phys. Rev. A 25(2), 978, (1982).

[61] S D Cohen, A C Hindmarsh, P F Dubois, CVODE, a stiff/nonstiff ODE solver in C, Computers in Physics 10(2), 138, (1996).

[62] P Charbonneau, J Kurchan, G Parisi, et al., Glass and jamming transitions: From exact results to finite-dimensional descriptions, Ann. Rev. Cond. Mat. Phys. 8(1), 265, (2017).

[63] S Franz, G Parisi, Recipes for metastable states in spin glasses, Journal de Physique I 5(11), 1401, (1995).

[64] G Parisi, F Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys. 82(1), 789, (2010).

[65] L Berthier, M Ozawa, C Scalliet, Configurational entropy of glass-forming liquids, J. Chem. Phys. 150(16), 160902, (2019).

[66] C Rulquin, P Urbani, G Biroli, et al., Nonperturbative fluctuations and metastability in a simple model: from observables to microscopic theory and back, J. Stat. Mech. 2016(2), 023209, (2016).

[67] F H Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935, (1995).

[68] F Sciortino, Potential energy landscape description of supercooled liquids and glasses, J. Stat. Mech. 2005(5), P05015, (2005).

[69] L Berthier, P Charbonneau, D Coslovich, et al., Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling, Proc. Nat. Ac. Sci. 114(43), 11356, (2017).

[70] M Ozawa, G Parisi, L Berthier, Configurational entropy of polydisperse supercooled liquids, J. Chem. Phys. 149(15), 154501, (2018).

[71] Y Nishikawa, M Ozawa, A Ikeda, et al., Relaxation Dynamics in the Energy Landscape of Glass-Forming Liquids, Phys. Rev. X 12, 021001, (2022).

[72] C Scalliet, B Guiselin, L Berthier, Excess wings and asymmetric relaxation spectra in a facilitated trap model, J. Chem. Phys. 155, 064505, (2021).

[73] B Guiselin, C Scalliet, L Berthier, Microscopic origin of excess wings in relaxation spectra of supercooled liquids, Nat. Phys. 18, 468, (2022).

[74] A Chakraborty, P Seiler, G J Balas, Susceptibility of F/A-18 flight controllers to the fallingleaf mode: Nonlinear analysis, J. Guid. Control Dyn. 34(1), 73, (2011).

[75] M Kac, On the average number of real roots of a random algebraic equation, Bull. Am. Math. Soc. 49(4), 314, (1943).

[76] K Farahmand, On the average number of real roots of a random algebraic equation, Ann. Probab. 14(2), 702, (1986).

[77] E Bogomolny, O Bohigas, P Leboeuf, Distribution of roots of random polynomials, Phys. Rev. Lett. 68(18), 2726, (1992).

[78] A Edelman, E Kostlan, How many zeros of a random polynomial are real?, Bull. Am. Math. Soc. 32(1), 1, (1995).

[79] J M Rojas, On the average number of real roots of certain random sparse polynomial systems, Lectures in Applied Mathematics American Mathematical Society 32, 689, (1996).

[80] Y V Fyodorov, Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices, Phys. Rev. Lett. 92(24), 240601, (2004).

[81] G Malajovich, J M Rojas, High probability analysis of the condition number of sparse polynomial systems, Theor. Comput. Sci. 315(2-3), 525, (2004).

[82] J-M Aza ̈ıs, M Wschebor, On the roots of a random system of equations. The theorem of Shub and Smale and some extensions, Found. Comput. Math. 5(2), 125, (2005).

[83] D Armentano, M Wschebor, Random systems of polynomial equations. The expected number of roots under smooth analysis, Bernoulli 15(1), 249, (2009).

[84] Y V Fyodorov, G A Hiary, J Keating, Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function, Phys. Rev. Lett. 108(17), 170601, (2012).

[85] Y V Fyodorov, C Nadal, Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution, Phys. Rev. Lett. 109(16), 167203, (2012).

[86] Y V Fyodorov, High-dimensional random fields and random matrix theory, ArXiv Preprint, arXiv:1307.2379, (2013).

[87] Y V Fyodorov, A Lerario, E Lundberg, On the number of connected components of random algebraic hypersurfaces, J. Geom. Phys. 95, 1, (2015).

[88] D Cheng, A Schwartzman, On the explicit height distribution and expected number of local maxima of isotropic Gaussian random fields, ArXiv Preprint, arXiv:1503.01328, (2015).

[89] F Krzakala, J Kurchan, Landscape analysis of constraint satisfaction problems, Phys. Rev. E 76, 021122, (2007).

[90] F Krzakala, L Zdeborov ́a, Hiding Quiet Solutions in Random Constraint Satisfaction Problems, Phys. Rev. Lett. 102, 238701, (2009).

[91] L Zdeborov ́a, M M ́ezard, Constraint Satisfaction Problems with Isolated Solutions are Hard, J. Stat. Mech. 2008, P12004, (2008).

[92] M-H Tayarani-Narajan, A Pr ̈ugel-Bennett, On the Landscape of Combinatorial Optimisation Problems, IEEE Transactions on Evolutionary Computation 18(3), 420, (2013).

[93] T C Bachlechner, K Eckerle, O Janssen, et al., Axion landscape cosmology, Journal of Cosmology and Astroparticle Physics 2019, 062, (2019).

[94] A J Lotka, Contribution to the Theory of Periodic Reaction, J. Phys. Chem. 14(3), 271, (1910).

[95] A J Lotka, Analytical Note on Certain Rhythmic Relations in Organic Systems, Proc.Natl. Acad. Sci. U.S.A. 6(7), 410, (1920).

[96] V Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma 2, 31, (1926); Nature \textbf{118}, 558 (1926).

[97] G Bunin, Ecological communities with Lotka-Volterra dynamics, Phys. Rev. E 95(4), 042414, (2017).

[98] G Biroli, G Bunin, C Cammarota, Marginally stable equilibria in critical ecosystems, New J. Phys. 20, 083051, (2018).

[99] F Roy, G Biroli, G Bunin, et al., Numerical implementation of dynamical mean field theory for disordered systems: application to the Lotka-Volterra model of ecosystems, J. Phys. A: Math. Theor. 52, 484001, (2019).

[100] A Altieri, F Roy, C Cammarota, et al., Properties of Equilibria and Glassy Phases of the Random Lotka-Volterra Model with Demographic Noise, Phys. Rev. Lett. 126, 258301, (2021).

[101] M Barbier, J-F Arnoldi, G Bunin, et al., Generic assembly patterns in complex ecological communities, Proc. Natl. Acad. Sci. U.S.A. 115(9), 2156, (2018).

[102] G Bunin, Directionality and community-level selection, Oikos 130(4), 489, (2018).

[103] M Barbier, C de Mazancourt, M Loreau, et al., Fingerprints of High-Dimensional Coexistence in Complex Ecosystems, Phys. Rev. X 11(1), 011009, (2021).

[104] A J Ballard, R Das, S Martiniani, et al., Energy landscapes for machine learning, Phys. Chem. Chem. Phys. 19, 12585-12603, (2017).

[105] S Hochreiter, J Schmidhuber, Simplifying neural nets by discovering flat minima, NeurIPS 7(1994).

[106] S Hochreiter, J Schmidhuber, Flat minima, Neur. Comput. 9(1), 1, (1997).

[107] C Baldassi, F Pittorino, R Zecchina, Shaping the learning landscape in neural networks around wide flat minima, Proc. Natl. Acad. Sci. U.S.A. 117(1), 161, (2020).

[108] Y Feng, Y Tu, The inverse variance-flatness relation in stochastic gradient descent is critical for finding flat minima, Proc. Natl. Acad. Sci. U.S.A. 118(9), e2015617118, (2021).

[109] S Zhang, I Reid, G P ́erez, et al., Why Flatness Correlates With Generalization For Deep Neural Networks, Arxiv Preprint arXiv:2103.06219, (2021).

[110] F Pittorino, C Lucibello, C Feinauer, et al., Entropic gradient descent algorithms and wide flat minima, J. Stat. Mech. 2021, 124015, (2021).

[111] S S Mannelli, G Biroli, C Cammarota, et al., Complex dynamics in simple neural networks: Understanding gradient flow in phase retrieval, NeurIPS 33, 3265, (2020).

[112] D M Ceperley, M Dewing, The penalty method for random walks with uncertain energies, J. Chem. Phys. 110(20), 9812, (1999).

[113] R L Stratonovich, On a Method of Calculating Quantum Distribution Functions, Soviet Physics Doklady 2, 416, (1957).

[114] J Hubbard, Calculation of Partition Functions, Phys. Rev. Lett. 3, 77, (1959).

[115] P Attard, Thermodynamics and statistical mechanics: equilibrium by entropy maximisation, Academic Press, London (2002).

[116] J W Gibbs, Elementary principles in statistical mechanics, Charles Scribner's Sons, New York (1902).

[117] M Kardar, Statistical Physics of Particles, Cambridge University Press, Cambridge (2007).

[118] S Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance, Annales Scientifiques de I'É.N.S., Bachelier (1824).

[119] S Martiniani, On the complexity of energy landscapes: algorithms and a direct test of the Edwards conjecture, University of Cambridge, Cambridge (2017).

[120] T M Cover, Elements of information theory, John Wiley & Sons, New York (1999).

[121] D Frenkel, B Smit, Understanding molecular simulation: from algorithms to applications, Vol. I, Elsevier (2001).

[122] D Landau, K Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Second Edition, Cambridge University Press, Cambridge (2005).

[123] D Wales, Energy landscapes: Applications to clusters, biomolecules and glasses, Cambridge University Press, Cambridge (2003).

[124] F H Stillinger, Energy landscapes, inherent structures, and condensed-matter phenomena, Princeton University Press, New Yersey (2015).

[125] E Kostlan, On the expected number of real roots of a system of random polynomial equations, Foundations of Computational Mathematics, World Scientific, Singapore (2002).

[126] A J Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore (1925).

[127] S Artstein-Avidan, A Giannopoulos, V D Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, Volume 202, American Mathematical Society, Providence, Rhode Island (2015).

[128] I Gel'Fand, G Shilov, Generalized functions, Vol. 1, Academic Press, New York (1968).

[129] E W Weisstein, Gabriel's Horn, In: MathWorld-A Wolfram Web Resource, mathworld.wolfram.com/GabrielsHorn.html.

[130] D Frenkel, Private communication.